Asymptotic analysis of periodically-perforated nonlinear media at and close to the critical exponent
نویسندگان
چکیده
We give a general Γ-convergence result for vector-valued non-linear energies defined on perforated domains for integrands with p-growth in the critical case p = n. We characterize the limit extra term by a formula of homogenization type. We also prove that for p close to n there are three regimes, two with a non trivial size of the perforation (exponential and mixed polynomial-exponential), and one where the Γ-limit is always trivial.
منابع مشابه
Asymptotic analysis of periodically perforated nonlinear media close to the critical exponent
We give a Γ-convergence result for vector-valued nonlinear energies defined on periodically perforated domains. We consider integrands with p-growth for p converging to the space dimension n. We prove that for p close to the critical exponent n there are three regimes, two with a non-trivial size of the perforations (exponential and mixed polynomial-exponential) and one where the Γ-limit is alw...
متن کاملAsymptotic analysis of periodically-perforated nonlinear media at the critical exponent
We give a Γ-convergence result for vector-valued nonlinear energies defined on periodically perforated domains. We consider integrands with n-growth where n is the space dimension, showing that there exists a critical scale for the perforations such that the Γ-limit is non-trivial. We prove that the limit extra-term is given by a formula of homogenization type, which simplifies in the case of n...
متن کاملAsymptotic analysis of periodically-perforated nonlinear media
A well-known result on the asymptotic behaviour of Dirichlet problems in perforated domains shows the appearance of a ‘strange’ extra term as the period of the perforation tends to 0. In a paper by Cioranescu and Murat [10] (see also e.g. earlier work by Marchenko Khrushlov [17]) the following result (among others) is proved. Let Ω be a bounded open set in R, n ≥ 3 and for all δ > 0 let Ωδ be t...
متن کاملChaotic dynamic analysis and nonlinear control of blood glucose regulation system in type 1 diabetic patients
In this paper, chaotic dynamic and nonlinear control in a glucose-insulin system in types I diabetic patients and a healthy person have been investigated. Chaotic analysis methods of the blood glucose system include Lyapunov exponent and power spectral density based on the time series derived from the clinical data. Wolf's algorithm is used to calculate the Lyapunov exponent, which positive val...
متن کاملAnalysis of the Coupled Nonlinear Vibration of a Two-Mass System
This paper presents a fixed-end two-mass system (TMS) with end constraints that permits uncoupled solutions for different masses. The coupled nonlinear models for the present fixed-end TMS were solved using the continuous piecewise linearization method (CPLM) and detailed investigation on the effect of mass-ratio on the TMS response was conducted. The investigations showed that increased mass-r...
متن کامل