Intrinsic Functional Plasticity of the Sensorimotor Network in Relapsing-Remitting Multiple Sclerosis: Evidence from a Centrality Analysis

نویسندگان

  • Ying Zhuang
  • Fuqing Zhou
  • Honghan. Gong
  • Francisco J. Esteban
چکیده

BACKGROUND AND PURPOSE Advanced MRI studies have revealed regional alterations in the sensorimotor cortex of patients with relapsing-remitting multiple sclerosis (RRMS). However, the organizational features underlying the relapsing phase and the subsequent remitting phase have not been directly shown at the functional network or the connectome level. Therefore, this study aimed to characterize MS-related centrality disturbances of the sensorimotor network (SMN) and to assess network integrity and connectedness. METHODS Thirty-four patients with clinically definite RRMS and well-matched healthy controls participated in the study. Twenty-three patients in the remitting phase underwent one resting-state functional MRI, and 11 patients in the relapsing-remitting phase underwent two different MRIs. We measured voxel-wise centrality metrics to determine direct (degree centrality, DC) and global (eigenvector centrality, EC) functional relationships across the entire SMN. RESULTS In the relapsing phase, DC was significantly decreased in the bilateral primary motor and somatosensory cortex (M1/S1), left dorsal premotor (PMd), and operculum-integrated regions. However, DC was increased in the peripheral SMN areas. The decrease in DC in the bilateral M1/S1 was associated with the expanded disability status scale (EDSS) and total white matter lesion loads (TWMLLs), suggesting that this adaptive response is related to the extent of brain damage in the rapid-onset attack stage. During the remission process, these alterations in centrality were restored in the bilateral M1/S1 and peripheral SMN areas. In the remitting phase, DC was reduced in the premotor, supplementary motor, and operculum-integrated regions, reflecting an adaptive response due to brain atrophy. However, DC was enhanced in the right M1 and left parietal-integrated regions, indicating chronic reorganization. In both the relapsing and remitting phases, the changes in EC and DC were similar. CONCLUSIONS The alterations in centrality within the SMN indicate rapid plasticity and chronic reorganization with a biased impairment of specific functional areas in RRMS patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic Functional Plasticity of the Thalamocortical System in Minimally Disabled Patients with Relapsing-Remitting Multiple Sclerosis

The thalamus plays a crucial role in sensorimotor, cognitive, and attentional circuit functions. Disruptions in thalamic connectivity are believed to underlie the symptoms of multiple sclerosis (MS). Therefore, assessing thalamocortical structural connectivity (SC) and functional connectivity (FC) may provide new insights into the mechanism of intrinsic functional plasticity in a large-scale ne...

متن کامل

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

Safety and effectiveness assessment of intravenous immunoglobulin in the treatment of relapsing-remitting multiple sclerosis: A meta-analysis

Background: Intravenous immunoglobulin (IVIG) is an established treatment of immune mediated demyelinating neuropathy including Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. Recent trials suggest its efficacy in treating relapsing- remitting multiple sclerosis. IVIG exerts a number of effects, which may be beneficial in treating multiple sclerosis (MS): R...

متن کامل

Resting state networks change in clinically isolated syndrome.

Task-functional magnetic resonance imaging studies have shown that early cortical recruitment exists in multiple sclerosis, which can partly explain the discrepancy between conventional magnetic resonance imaging and clinical disability. The study of the brain 'at rest' may provide additional information, because task-induced metabolic changes are relatively small compared to the energy use of ...

متن کامل

Altered cerebellar functional connectivity mediates potential adaptive plasticity in patients with multiple sclerosis.

BACKGROUND The cerebellum is of potential interest for understanding adaptive responses in motor control in patients with multiple sclerosis because of the high intrinsic synaptic plasticity of this brain region. OBJECTIVE To assess the relative roles of interactions between the neocortex and the cerebellum using measures of functional connectivity. METHODS A role for altered neocortical-ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015