Perron-frobenius Theory for Complex Matrices
نویسنده
چکیده
The purpose of this paper is to present a unified Perron-Frobenius Theory for nonnegative, for real not necessarily nonnegative and for general complex matrices. The sign-real spectral radius was introduced for general real matrices. This quantity was shown to share certain properties with the Perron root of nonnegative matrices. In this paper we introduce the sign-complex spectral radius. Again, this quantity extends many properties of the Perron root of nonnegative matrices to general complex matrices. Various characterizations will be given, and many open problems remain.
منابع مشابه
PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کاملVariational characterizations of the sign-real and the sign-complex spectral radius
The sign-real and the sign-complex spectral radius, also called the generalized spectral radius, proved to be an interesting generalization of the classical Perron-Frobenius theory (for nonnegative matrices) to general real and to general complex matrices, respectively. Especially the generalization of the well-known Collatz-Wielandt max-min characterization shows one of the many one-to-one cor...
متن کاملEla Variational Characterizations of the Sign-real and the Sign-complex Spectral Radius∗
The sign-real and the sign-complex spectral radius, also called the generalized spectral radius, proved to be an interesting generalization of the classical Perron-Frobenius theory (for nonnegative matrices) to general real and to general complex matrices, respectively. Especially the generalization of the well-known Collatz-Wielandt max-min characterization shows one of the many one-to-one cor...
متن کاملFrobenius Theory : A New Proof of the Basics
This note presents a new proof of basic Perron{Frobenius theory of irreducible nonnegative matrices. ABSTRACT This note presents a new proof of basic Perron{Frobenius theory of irreducible nonnegative matrices.
متن کاملO ct 2 00 6 Cones and gauges in complex spaces : Spectral gaps and complex Perron - Frobenius theory
We introduce complex cones and associated projective gauges, generalizing a real Birkhoff cone and its Hilbert metric to complex vector spaces. We deduce a variety of spectral gap theorems in complex Banach spaces. We prove a dominated complex cone-contraction Theorem and use it to extend the classical Perron-Frobenius Theorem to complex matrices, Jentzsch’s Theorem to complex integral operator...
متن کامل