Glass transitions and shear thickening suspension rheology
نویسنده
چکیده
We introduce a class of simple models for shear thickening and/or ‘‘jamming’’ in colloidal suspensions. These are based on the schematic mode coupling theory ~MCT! of the glass transition, having a memory term that depends on a density variable, and on both the shear stress and the shear rate. ~Tensorial aspects of the rheology, such as normal stresses, are ignored for simplicity.! We calculate steady-state flow curves and correlation functions. Depending on model parameters, we find a range of rheological behaviors, including ‘‘S-shaped’’ flow curves, indicating discontinuous shear thickening, and stress-induced transitions from a fluid to a nonergodic ~jammed! state, showing zero flow rate in an interval of applied stress. The shear thickening and jamming scenarios that we explore appear broadly consistent with experiments on dense colloids close to the glass transition, despite the fact that we ignore hydrodynamic interactions. In particular, the jamming transition we propose is conceptually quite different from various hydrodynamic mechanisms of shear thickening in the literature, although the latter might remain pertinent at lower colloid densities. Our jammed state is a stress-induced glass, but its nonergodicity transitions have an analytical structure distinct from that of the conventional MCT glass transition. © 2005 The Society of Rheology. @DOI: 10.1122/1.1814114#
منابع مشابه
Microstructure and Rheology Relationships for Shear Thickening Colloidal Dispersions
The non-Newtonian shear rheology of colloidal dispersions is the result of the competition and balance between hydrodynamic (dissipative) and thermodynamic (conservative) forces that lead to a nonequilibrium microstructure under flow. We present the first experimental measurements of the shear induced microstructure of a concentrated, near hard-sphere colloidal dispersion through the shear thic...
متن کاملShear thickening of cornstarch suspensions as a reentrant jamming transition.
We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits shear thickening. From magnetic resonance imaging velocimetry and classical rheology it follows that as a function of the applied stress the suspension is first solid (yield stress), then liquid, and then solid again when it shear thickens. For the onset of thickening we find that the smaller the gap o...
متن کاملRheology of non-Brownian particles suspended in concentrated colloidal dispersions at low particle Reynolds number
The shear flow of non-Brownian glass spheres suspended in a concentrated colloidal dispersion that exhibits non-Newtonian rheology is investigated. At low volume fractions, the addition of non-Brownian spherical particles to the colloidal dispersion leads to an increase in the shear viscosity as well as the dynamic moduli. The flow curves of these suspensions are qualitatively similar to the su...
متن کاملMean-field microrheology of a very soft colloidal suspension: Inertia induces shear thickening.
Colloidal suspensions have a rich rheology and can exhibit shear thinning as well as shear thickening. Numerical simulations recently suggested that shear-thickening may be attributed to the inertia of the colloids, besides the hydrodynamic interactions between them. Here, we consider the ideal limit of a dense bath of soft colloids following an underdamped Langevin dynamics. We use a mean-fiel...
متن کاملRheology and Microstructure of Shear Thickening Fluid Suspoemulsions
A novel shear thickening suspoemulsion is formulated and studied with a new rheo-microscope instrument. The experimental fluid system is comprised of a immiscible blend of Newtonian, low molecular weight poly(dimethylsiloxane) and a shear thickening suspension of colloidal silica in poly(ethylene glycol). The blend is studied as a function of composition where phase inversion is evident at low ...
متن کامل