Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment

نویسندگان

  • Xia Wang
  • Qiuqiang Gao
  • Jie Bao
چکیده

BACKGROUND Furfural and 5-hydroxymethylfurfural (HMF) are the two major inhibitor compounds generated from lignocellulose pretreatment, especially for dilute acid, steam explosion, neutral hot water pretreatment methods. The two inhibitors severely inhibit the cell growth and metabolism of fermenting strains in the consequent bioconversion step. The biodetoxification strain Amorphotheca resinae ZN1 has demonstrated its extraordinary capacity of fast and complete degradation of furfural and HMF into corresponding alcohol and acid forms. The elucidation of degradation metabolism of A. resinae ZN1 at molecular level will facilitate the detoxification of the pretreated lignocellulose biomass and provide the metabolic pathway information for more powerful biodetoxification strain development. RESULTS Amorphotheca resinae ZN1 was able to use furfural or HMF as the sole carbon source for cell growth. During the detoxification process, A. resinae ZN1 firstly reduced furfural or HMF into furfuryl alcohol or HMF alcohol, and then oxidized into furoic acid or HMF acid through furan aldehyde as the intermediate at low concentration level. The cell mass measurement suggested that furfural was more toxic to A. resinae ZN1 than HMF. In order to identify the degradation mechanism of A. resinae ZN1, transcription levels of 137 putative genes involved in the degradation of furfural and HMF in A. resinae ZN1 were investigated using the real-time quantitative PCR (qRT-PCR) method under the stress of furfural and HMF, as well as the stress of their secondary metabolites, furfuryl alcohol and HMF alcohol. Two Zn-dependent alcohol dehydrogenase genes and five AKR/ARI genes were found to be responsible for the furfural and HMF conversion to their corresponding alcohols. For the conversion of the two furan alcohols to the corresponding acids, three propanol-preferring alcohol dehydrogenase genes, one NAD(P)(+)-depending aldehyde dehydrogenase gene, or two oxidase genes with free oxygen as the substrate were identified under aerobic condition. CONCLUSIONS The genes responsible for the furfural and HMF degradation to the corresponding alcohols and acids in A. resinae ZN1 were identified based on the analysis of the genome annotation, the gene transcription data and the inhibitor conversion results. These genetic resources provided the important information for understanding the mechanism of furfural and HMF degradation and modification of high tolerant strains used for biorefinery processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1

BACKGROUND Furfural and 5-hydroxymethylfurfural (HMF) are the degradation products of lignocellulose during pretreatment operations and significantly inhibit the consequent enzymatic hydrolysis and fermentation processes. The biodetoxification fungus Amorphotheca resinae ZN1 had demonstrated its excellent capacity on degrading lignocellulose derived inhibitors and helped the fermentation proces...

متن کامل

Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation

BACKGROUND Degradation of the toxic compounds generated in the harsh pretreatment of lignocellulose is an inevitable step in reducing the toxin level for conducting practical enzymatic hydrolysis and ethanol fermentation processes. Various detoxification methods have been tried and many negative outcomes were found using these methods, such as the massive freshwater usage and wastewater generat...

متن کامل

Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation

BACKGROUND Biodetoxification by the fungus Amorphotheca resinae ZN1 provides an effective way of inhibitor removal from pretreated lignocellulose feedstock and has been applied in the process of ethanol, biolipids, and lactic acid production. However, the long-time used and the consumption of considerable xylose in the pretreated materials reduced the process efficiency. The improvements of bio...

متن کامل

Comparison of tolerance of four bacterial nanocellulose-producing strains to lignocellulose-derived inhibitors

BACKGROUND Through pretreatment and enzymatic saccharification lignocellulosic biomass has great potential as a low-cost feedstock for production of bacterial nanocellulose (BNC), a high value-added microbial product, but inhibitors formed during pretreatment remain challenging. In this study, the tolerance to lignocellulose-derived inhibitors of three new BNC-producing strains were compared to...

متن کامل

Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440

The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015