Graft-transmissible induction of potato tuberization by the microRNA miR172.

نویسندگان

  • Antoine Martin
  • Hélène Adam
  • Mercedes Díaz-Mendoza
  • Marek Zurczak
  • Nahuel D González-Schain
  • Paula Suárez-López
چکیده

The photoreceptor phytochrome B (PHYB) and the homeodomain protein BEL5 are involved in the response of potato tuber induction to the photoperiod. However, whether they act in the same tuberization pathway is unknown. Here we show the effect of a microRNA, miR172, on this developmental event. miR172 levels are higher under tuber-inducing short days than under non-inductive long days and are upregulated in stolons at the onset of tuberization. Overexpression of this microRNA in potato promotes flowering, accelerates tuberization under moderately inductive photoperiods and triggers tuber formation under long days. In plants with a reduced abundance of PHYB, which tuberize under long days, both BEL5 mRNA and miR172 levels are reduced in leaves and increased in stolons. This, together with the presence of miR172 in vascular bundles and the graft transmissibility of its effect on tuberization, indicates that either miR172 might be mobile or it regulates long-distance signals to induce tuberization. Consistent with this, plants overexpressing miR172 show increased levels of BEL5 mRNA, which has been reported to be transmissible through grafts. Furthermore, we identify an APETALA2-like mRNA containing a miR172 binding site, which is downregulated in plants overexpressing miR172 and plants in which PHYB is silenced. Altogether, our results suggest that miR172 probably acts downstream of the tuberization repressor PHYB and upstream of the tuberization promoter BEL5 and allow us to propose a model for the control of tuberization by PHYB, miR172 and BEL5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena.

MicroRNA156 (miR156) functions in maintaining the juvenile phase in plants. However, the mobility of this microRNA has not been demonstrated. So far, only three microRNAs, miR399, miR395, and miR172, have been shown to be mobile. We demonstrate here that miR156 is a potential graft-transmissible signal that affects plant architecture and tuberization in potato (Solanum tuberosum). Under tuber-n...

متن کامل

MicroRNA156: A Potential Graft-Transmissible MicroRNA That Modulates Plant Architecture and Tuberization in Solanum tuberosum ssp. andigena1[C][W][OPEN]

MicroRNA156 (miR156) functions in maintaining the juvenile phase in plants. However, the mobility of this microRNA has not been demonstrated. So far, only three microRNAs, miR399,miR395, and miR172, have been shown to be mobile. We demonstrate here that miR156 is a potential graft-transmissible signal that affects plant architecture and tuberization in potato (Solanum tuberosum). Under tuber-no...

متن کامل

A critical appraisal of phloem-mobile signals involved in tuber induction

The identification of FLOWERING LOCUS T (FT) and several FT homologs as phloem-mobile proteins that regulate flowering has sparked the search for additional homologs involved in the long-distance regulation of other developmental processes. Given that flowering and tuber induction share regulatory pathways, the quest for long-distance tuberization signals has been further stimulated. Several tu...

متن کامل

Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization

Grafting experiments between phytochrome B antisense and wild-type potato (Solanum tuberosum L. subsp. andigena [line 7540]) plants provide evidence that phytochrome B is involved in the production of a graft-transmissible inhibitor of tuberization, the level of which is reduced in the antisense plants, allowing them to tuberize in noninducing photoperiods.

متن کامل

The Multiple Signals That Control Tuber Formation1[OPEN]

Under optimum environmental conditions, tuberization in potato (Solanum tuberosum) is activated by signals that either function in the leaf or arise in this organ and move down into stolon tips to induce tuber formation. Three major signals have been identified: CYCLING DOF FACTOR1 (StCDF1) for earliness and StBEL5 mRNA and SELF-PRUNING6A (StSP6A) protein as mobile signals originating in the le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 136 17  شماره 

صفحات  -

تاریخ انتشار 2009