Bacterial Swarms Recruit Cargo Bacteria To Pave the Way in Toxic Environments
نویسندگان
چکیده
UNLABELLED Swarming bacteria are challenged by the need to invade hostile environments. Swarms of the flagellated bacterium Paenibacillus vortex can collectively transport other microorganisms. Here we show that P. vortex can invade toxic environments by carrying antibiotic-degrading bacteria; this transport is mediated by a specialized, phenotypic subpopulation utilizing a process not dependent on cargo motility. Swarms of beta-lactam antibiotic (BLA)-sensitive P. vortex used beta-lactamase-producing, resistant, cargo bacteria to detoxify BLAs in their path. In the presence of BLAs, both transporter and cargo bacteria gained from this temporary cooperation; there was a positive correlation between BLA resistance and dispersal. P. vortex transported only the most beneficial antibiotic-resistant cargo (including environmental and clinical isolates) in a sustained way. P. vortex displayed a bet-hedging strategy that promoted the colonization of nontoxic niches by P. vortex alone; when detoxifying cargo bacteria were not needed, they were lost. This work has relevance for the dispersal of antibiotic-resistant microorganisms and for strategies for asymmetric cooperation with agricultural and medical implications. IMPORTANCE Antibiotic resistance is a major health threat. We show a novel mechanism for the local spread of antibiotic resistance. This involves interactions between different bacteria: one species provides an enzyme that detoxifies the antibiotic (a sessile cargo bacterium carrying a resistance gene), while the other (Paenibacillus vortex) moves itself and transports the cargo. P. vortex used a bet-hedging strategy, colonizing new environments alone when the cargo added no benefit, but cooperating when the cargo was needed. This work is of interest in an evolutionary context and sheds light on fundamental questions, such as how environmental antibiotic resistance may lead to clinical resistance and also microbial social organization, as well as the costs, benefits, and risks of dispersal in the environment.
منابع مشابه
Collective navigation of cargo-carrying swarms.
Much effort has been devoted to the study of swarming and collective navigation of micro-organisms, insects, fish, birds and other organisms, as well as multi-agent simulations and to the study of real robots. It is well known that insect swarms can carry cargo. The studies here are motivated by a less well-known phenomenon: cargo transport by bacteria swarms. We begin with a concise review of ...
متن کاملA delve into the exploration of potential bacterial extremophiles used for metal recovery
A multitude of microbes are involved in the solubilisation of minerals and metals as this approach offers numerous advantages over traditional methods. This strategy is preferred as it is eco-friendly and economical, thus overcoming the drawbacks of the traditional approach of pyrometallurgy. Many different types of bacteria are employed in the process of Bioleaching, which are collectively gro...
متن کاملMultispecies Swarms of Social Microorganisms as Moving Ecosystems.
Microorganisms use collective migration to cross barriers and reach new habitats, and the ability to form motile swarms offers a competitive advantage. Traditionally, dispersal by microbial swarm propagation has been studied in monoculture. Microorganisms can facilitate other species' dispersal by forming multispecies swarms, with mutual benefits. One party (the transporter) moves a sessile par...
متن کاملEvaluation of Toxicity of Iron, Chromium and Cadmium on Bacillus cereus Growth
Objective High concentration of iron and other trace elements could restrict bacterial growth and modify their metabolic pattern as well. However, this study aimed to find out the influence of iron, chromium, cadmium and synergism or antagonism between these elements on the growth of a gram positive bacterium. Materials and Methods In a series of experiments, Bucillus cereus was cultured in a n...
متن کاملCharacterization of naphthalene-degrading bacteria isolated from the Persian Gulf and the Caspian Sea as potential agents for naphthalene removal from polluted environments
Over fifty bacterial strains were isolated from seawater samples in the presence of naphthalene as a sole source of carbon and energy. Among them, three isolates with higher growth rate and naphthalene degradation ability were selected for further studies. Biochemical and molecular analysis revealed that two Persian Gulf isolates, strain PG-10 and strain PG-48 belonged to the group of hydrocarb...
متن کامل