Process-Based Risk Measures for Observable and Partially Observable Discrete-Time Controlled Systems

نویسندگان

  • Jingnan Fan
  • Andrzej Ruszczyński
چکیده

For controlled discrete-time stochastic processes we introduce a new class of dynamic risk measures, which we call process-based. Their main features are that they measure risk of processes that are functions of the history of the base process. We introduce a new concept of conditional stochastic time consistency and we derive the structure of process-based risk measures enjoying this property. We show that they can be equivalently represented by a collection of static law-invariant risk measures on the space of functions of the state of the base process. We apply this result to controlled Markov processes and we derive dynamic programming equations. Next, we consider partially observable processes and we derive the structure of stochastically conditionally time-consistent risk measures in this case. We prove that they can be represented by a sequence of law invariant risk measures on the space of function of the observable part of the state. We also prove corresponding dynamic programming equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A POMDP Framework to Find Optimal Inspection and Maintenance Policies via Availability and Profit Maximization for Manufacturing Systems

Maintenance can be the factor of either increasing or decreasing system's availability, so it is valuable work to evaluate a maintenance policy from cost and availability point of view, simultaneously and according to decision maker's priorities. This study proposes a Partially Observable Markov Decision Process (POMDP) framework for a partially observable and stochastically deteriorating syste...

متن کامل

Optimal Control of Partially Observable Linear Quadratic Systems with Asymmetric Observation Errors

This paper deals with the optimal quadratic control problem for non-Gaussian discrete-time stochastic systems. Our main result gives explicit solutions for the optimal quadratic control problem for partially observable dynamic linear systems with asymmetric observation errors. For this purpose an asymmetric version of the Kalman filter based on asymmetric least squares estimation is used. We il...

متن کامل

Computational Techniques for Reachability Analysis of Partially Observable Discrete Time Stochastic Hybrid Systems

Reachability analysis of hybrid systems has been used as a safety verification tool to assess offline whether the state of a system is capable of remaining within a designated safe region for a given time horizon. Although it has been applied to stochastic hybrid systems, little work has been done on the equally important problem of reachability under incomplete or noisy measurements of the sta...

متن کامل

A Partially Observable Markovian Maintenance Process with Continuous Cost Functions

In this paper a two-state Markovian maintenance process where the true state is unknown will be considered. The operating cost per period is a continuous random variable which depends on the state of the process. If investigation cost is incurred at the beginning of any period, the system wit I be returned to the "in-control" state instantaneously. This problem is solved using the average crite...

متن کامل

Reconstructing Model Parameters in Partially-Observable Discrete Stochastic Systems

The analysis of partially-observable discrete stochastic systems reconstructs the unobserved behavior of real-world systems. An example for such a system is a production facility where indistinguishable items are produced by two machines in stochastically distributed time intervals and are then tested by a single quality tester. Here, the source of each defective item can be reconstructed later...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015