Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls
نویسندگان
چکیده
BACKGROUND Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study, epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. RESULTS In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring) moieties in EGCG underwent radical cross-coupling with monolignols mainly by β-O-4-type cross-coupling, producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92%) that far exceeded that for lignified controls (44 to 62%). Alkali-insoluble residues from EGCG-lignified walls yielded up to 34% more glucose and total sugars following enzymatic saccharification than lignified controls. CONCLUSIONS It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification. Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG for incorporation into lignin would be a promising plant genetic engineering target for improving the delignification and saccharification of biomass crops.
منابع مشابه
Effect of Lignin on Enzymatic Saccharification of Hardwood after Green Liquor and Sulfuric Acid Pretreatments
Red maple, sweet gum, trembling aspen, red alder, and Eucalyptus globulus samples were pretreated with dilute sulfuric acid and green liquor before enzymatic saccharification. Substrates showed different levels of delignification and sugar recovery, depending on the applied pretreatments and the syringaldehyde/vanillin ratio (S/V). Three major conclusions were drawn in this research. First, lig...
متن کاملHydroxycinnamate conjugates as potential monolignol replacements: in vitro lignification and cell wall studies with rosmarinic acid.
The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers, such as rosmarinic acid (RA) and analogous catechol derivatives, into cell-wall lignins that are consequently less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that RA readily underwent peroxidase-catalyzed copolymerization with monolignols and lignin...
متن کاملA novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion
BACKGROUND The selective lignin-degrading white-rot fungi are regarded to be the best lignin degraders and have been widely used for reducing the saccharification recalcitrance of lignocellulose. However, the biological delignification and conversion of lignocellulose in biorefinery is still limited. It is necessary to develop novel and more efficient bio-delignification systems. RESULTS Phys...
متن کاملThe Effect of Delignification Process with Alkaline Peroxide on Lactic Acid Production from Furfural Residues
Furfural residues produced from the furfural industry were investigated as a substrate for lactic acid production by simultaneous saccharification and fermentation (SSF). Alkaline peroxide was used for delignification of furfural residues to improve the final lactic acid concentration. The residue was treated with 1.3% to 1.7% hydrogen peroxide at 80 °C for 1 h with a substrate concentration of...
متن کاملMechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification
Laboratory mechanical softwood pulps (MSP) and commercial bleached softwood kraft pulps (BSKP) were mechanically fibrillated by stone grinding with a SuperMassColloider . The extent of fibrillation was evaluated by SEM imaging, water retention value (WRV) and cellulase adsorption. Both lignin content and mechanical treatment significantly affected deconstruction and enzymatic saccharification o...
متن کامل