Activating PER Repressor through a DBT-Directed Phosphorylation Switch
نویسندگان
چکیده
Protein phosphorylation plays an essential role in the generation of circadian rhythms, regulating the stability, activity, and subcellular localization of certain proteins that constitute the biological clock. This study examines the role of the protein kinase Doubletime (DBT), a Drosophila ortholog of human casein kinase I (CKI)epsilon/delta. An enzymatically active DBT protein is shown to directly phosphorylate the Drosophila clock protein Period (PER). DBT-dependent phosphorylation sites are identified within PER, and their functional significance is assessed in a cultured cell system and in vivo. The per(S) mutation, which is associated with short-period (19-h) circadian rhythms, alters a key phosphorylation target within PER. Inspection of this and neighboring sequence variants indicates that several DBT-directed phosphorylations regulate PER activity in an integrated fashion: Alternative phosphorylations of two adjoining sequence motifs appear to be associated with switch-like changes in PER stability and repressor function.
منابع مشابه
DOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock.
Circadian clocks keep time via gene expression feedback loops that are controlled by time-of-day-specific changes in the synthesis, activity, and degradation of transcription factors. Within the Drosophila melanogaster circadian clock, DOUBLETIME (DBT) kinase is necessary for the phosphorylation of PERIOD (PER), a transcriptional repressor, and CLOCK (CLK), a transcriptional activator, as CLK-d...
متن کاملA small conserved domain of Drosophila PERIOD is important for circadian phosphorylation, nuclear localization, and transcriptional repressor activity.
We identify in this study a 27-amino-acid motif which is conserved between the Drosophila melanogaster period protein (PER) and the three mammalian PERs. Characterization of PER lacking this motif (PER Delta) shows that it is important for phosphorylation of Drosophila PER by casein kinase I epsilon (CKI epsilon; doubletime protein or DBT) and CKII. S2 cell assays indicate that the domain also ...
متن کاملThe double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period.
The Period (PER), Timeless (TIM), and Double-Time (DBT) proteins are essential components of one feedback loop in the Drosophila circadian molecular clock. PER and TIM physically interact. Coexpression of PER and TIM promotes their nuclear accumulation and influences the activity of DBT: although DBT phosphorylates and destabilizes PER, this is suppressed by TIM. Experiments using Drosophila ce...
متن کاملThe doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity.
In all genetically studied model organisms, a negative feedback loop of gene expression contributes to the circadian rhythm mechanism. In the Drosophila system, it has been proposed that the delay between the synthesis and function of clock proteins is due to phosphorylation-regulated nuclear entry. To test this hypothesis, we assayed the relationship between PER phosphorylation, nuclear locali...
متن کاملPhosphorylation of PERIOD Is Influenced by Cycling Physical Associations of DOUBLE-TIME, PERIOD, and TIMELESS in the Drosophila Clock
The clock gene double-time (dbt) encodes an ortholog of casein kinase Iepsilon that promotes phosphorylation and turnover of the PERIOD protein. Whereas the period (per), timeless (tim), and dClock (dClk) genes of Drosophila each contribute cycling mRNA and protein to a circadian clock, dbt RNA and DBT protein are constitutively expressed. Robust circadian changes in DBT subcellular localizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 6 شماره
صفحات -
تاریخ انتشار 2008