Combining Contextual Features for Word Sense Disambiguation
نویسندگان
چکیده
In this paper we present a maximum entropy Word Sense Disambiguation system we developed which performs competitively on SENSEVAL-2 test data for English verbs. We demonstrate that using richer linguistic contextual features significantly improves tagging accuracy, and compare the system’s performance with human annotator performance in light of both fine-grained and coarse-grained sense distinctions made by the sense inventory.
منابع مشابه
Combination of Contextual Features for Word Sense Disambiguation: LIU-WSD
This paper describes a system for word sense disambiguation that participated in the Swedish Lexical Sample task of SENSEVAL-2. The system LIU-WSD is based on letting different contextual features cast votes on preferred senses according to a ranking scheme.
متن کاملرفع ابهام معنایی واژگان مبهم فارسی با مدل موضوعی LDA
Word sense disambiguation is the task of identifying the correct sense for the word in a given context among a finite set of possible sense. In this paper a model for farsi word sense disambiguation is presented. The model use two group of features: first, all word and stop words around target word and topic models as second features. We extract topics from a farsi corpus with Latent Dirichlet ...
متن کاملRaw Corpus Word Sense Disambiguation
A wide range of approaches have been applied to word sense disambiguation. However, most require manually crafted knowledge such as annotated text, machine readable dictionaries or thesari, semantic networks, or aligned bilingual corpora. The reliance on these knowledge sources limits portability since they generally exist only for selected domains and languages. This poster presents a corpus-b...
متن کاملIntegrating Collocation Features in Chinese Word Sense Disambiguation
The selection of features is critical in providing discriminative information for classifiers in Word Sense Disambiguation (WSD). Uninformative features will degrade the performance of classifiers. Based on the strong evidence that an ambiguous word expresses a unique sense in a given collocation, this paper reports our experiments on automatic WSD using collocation as local features based on t...
متن کاملSimple Features for Chinese Word Sense Disambiguation
In this paper we report on our experiments on automatic Word Sense Disambiguation using a maximum entropy approach for both English and Chinese verbs. We compare the difficulty of the sensetagging tasks in the two languages and investigate the types of contextual features that are useful for each language. Our experimental results suggest that while richer linguistic features are useful for Eng...
متن کامل