On the Quasi-random Choice Method for the Liouville Equation of Geometrical Optics with Discontinuous Wave Speed
نویسندگان
چکیده
We study the quasi-random choice method (QRCM) for the Liouville equation of geometrical optics with discontinuous local wave speed. This equation arises in the phase space computation of high frequency waves through interfaces, where waves undergo partial transmissions and reflections. The numerical challenges include interface, contact discontinuities, and measure-valued solutions. The so-called QRCM is a random choice method based on quasi-random sampling (a deterministic alternative to random sampling). The method not only is viscosity-free but also provides faster convergence rate. Therefore, it is appealing for the problem under study which is indeed a Hamiltonian flow. Our analysis and computational results show that the QRCM 1) is almost first-order accurate even with the aforementioned discontinuities; 2) gives sharp resolutions for all discontinuities encountered in the problem; and 3) for measure-valued solutions, does not need the level set decomposition for finite difference/volume methods with numerical viscosities. Mathematics subject classification: 35L45, 65M06, 11K45.
منابع مشابه
On the random choice method for the Liouville equation of geometrical optics with discontinuous local wave speeds∗
We study the random choice method (RCM) for the Liouville equation of geometrical optics with discontinuous local wave speeds. This problem arises in the computation of high frequency waves through interfaces, where waves undergo partial transmissions and reflections. The numerical challenges include interface, contact discontinuities, and measurevalued solutions. The purpose of this paper is t...
متن کاملComputation of Transmissions and Reflections in Geometrical Optics via the Reduced Liouville Equation
We develop a numerical scheme for the wave front computation of complete transmissions and reflections in geometrical optics. Such a problem can be formulated by a reduced Liouville equation with a discontinuous local wave speed or index of refraction, arising in the high frequency limit of linear waves through inhomogeneous media. The key idea is to incorporate Snell’s Law of Refraction into t...
متن کاملHamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds
In this paper, we construct two classes of Hamiltonian-preserving numerical schemes for a Liouville equation with discontinuous local wave speed. This equation arises in the phase space description of geometrical optics, and has been the foundation of the recently developed level set methods for multivalued solution in geometrical optics. We extend our previous work in [S. Jin, X. Wen, Hamilton...
متن کاملA Hamiltonian-Preserving Scheme for the Liouville Equation of Geometrical Optics with Partial Transmissions and Reflections
We construct a class of Hamiltonian-preserving numerical schemes for the Liouville equation of geometrical optics, with partial transmissions and reflections. This equation arises in the high frequency limit of the linear wave equation, with a discontinuous index of refraction. In our previous work [Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuo...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کامل