Opposition-Based Learning in Compact Differential Evolution

نویسندگان

  • Giovanni Iacca
  • Ferrante Neri
  • Ernesto Mininno
چکیده

This paper proposes the integration of the generalized opposition based learning into compact Differential Evolution frameworks and tests its impact on the algorithmic performance. Opposition-based learning is a technique which has been applied, in several circumstances, to enhance the performance of Differential Evolution. It consists of the generation of additional points by means of a hyper-rectangle. These opposition points are simply generated by making use of a central symmetry within the hyper-rectangle. In the population based Differential Evolution, the inclusion of this search move corrects a limitation of the original algorithm, i.e. the scarcity of search moves, and sometimes leads to benefits in terms of algorithmic performance. The opposition-based learning scheme is further improved in the generalized scheme by integrating some randomness and progressive narrowing of the search. The proposed study shows how the generalized opposition-based learning can be encoded within a compact Differential Evolution framework and displays its effect on a set of diverse problems. Numerical results show that the generalized opposition-based learning is beneficial for compact Differential Evolution employing the binomial crossover while its implementation is not always successful when the exponential crossover is used. In particular, the opposition-based logic appears to be in general promising for non-separable problems whilst it seems detrimental for separable

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect

This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance.  First the problem is encoded with a...

متن کامل

Plate Recognition Using Fuzzy Noise Removal and Opposition-based Micro-Differential Evolution

Automatic plate recognition of vehicles is of great importance in route management systems. Especially that such systems require real-time algorithms to perform the plate recognition task as soon as possible. In this paper, a new plate recognition system based on a fuzzy noise removal technique and the opposition-based micro-differential evolution (OMDE) algorithms is presented. Since populatio...

متن کامل

Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems

This paper presents a novel algorithm based on generalized opposition-based learning (GOBL) to improve the performance of differential evolution (DE) to solve highdimensional optimization problems efficiently. The proposed approach, namely GODE, employs similar schemes of opposition-based DE (ODE) for opposition-based population initialization and generation jumping with GOBL. Experiments are c...

متن کامل

Nonlinear System Identification using Opposition Based Learning Differential Evolution and Neural Network Techniques

The slow convergence and local minima problems associated with neural networks (NN) used for non-linear system identification have been resolved by evolutionary techniques such as differential evolution (DE) combined with Levenberg Marquardt (LM) algorithm. In this work the authors attempted further to employ an opposition based learning in DE, known as opposition based differential evolution (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011