Parotid secretory granules: crossroads of secretory pathways and protein storage.
نویسندگان
چکیده
Saliva plays an important role in digestion, host defense, and lubrication. The parotid gland contributes a variety of secretory proteins-including amylase, proline-rich proteins, and parotid secretory protein (PSP)-to these functions. The regulated secretion of salivary proteins ensures the availability of the correct mix of salivary proteins when needed. In addition, the major salivary glands are targets for gene therapy protocols aimed at targeting therapeutic proteins either to the oral cavity or to circulation. To be successful, such protocols must be based on a solid understanding of protein trafficking in salivary gland cells. In this paper, model systems available to study the secretion of salivary proteins are reviewed. Parotid secretory proteins are stored in large dense-core secretory granules that undergo stimulated secretion in response to extracellular stimulation. Secretory proteins that are not stored in large secretory granules are secreted by either the minor regulated secretory pathway, constitutive secretory pathways (apical or basolateral), or the constitutive-like secretory pathway. It is proposed that the maturing secretory granules act as a distribution center for secretory proteins in salivary acinar cells. Protein distribution or sorting is thought to involve their selective retention during secretory granule maturation. Unlike regulated secretory proteins in other cell types, salivary proteins do not exhibit calcium-induced aggregation. Instead, sulfated proteoglycans play a role in the storage of secretory proteins in parotid acinar cells. This work suggests that unique sorting and retention mechanisms are responsible for the distribution of secretory proteins to different secretory pathways from the maturing secretory granules in parotid acinar cells.
منابع مشابه
Differential aggregation properties of secretory proteins that are stored in exocrine secretory granules of the pancreas and parotid glands.
Low-pH- and calcium-induced aggregation of regulated secretory proteins has been proposed to play a role in their retention and storage in secretory granules. However, this has not been tested for secretory proteins that are stored in the exocrine parotid secretory granules. Parotid granule matrix proteins were analyzed for aggregation in the presence or absence of calcium and in the pH range o...
متن کاملA sulfated proteoglycan is necessary for storage of exocrine secretory proteins in the rat parotid gland.
Sulfated proteoglycans have been proposed to play a role in the sorting and storage of secretory proteins in exocrine secretory granules. Rat parotid acinar cells expressed a 40- to 60-kDa proteoglycan that was stored in secretory granules. Treatment of the tissue with the proteoglycan synthesis inhibitor paranitrophenyl xyloside resulted in the complete abrogation of the sulfated proteoglycan....
متن کاملIsoproterenol increases sorting of parotid gland cargo proteins to the basolateral pathway.
Exocrine cells have an essential function of sorting secreted proteins into the correct secretory pathway. A clear understanding of sorting in salivary glands would contribute to the correct targeting of therapeutic transgenes. The present work investigated whether there is a change in the relative proportions of basic proline-rich protein (PRP) and acidic PRPs in secretory granules in response...
متن کاملAn effect of prostaglandin E1 on the acinar cell of the rat parotid gland.
The effects of in vivo administration of prostaglandin E1 (PGE1) on rat parotid gland acinar cells were studied and compared with glands removed from animals which had been either fasted or stimulated to discharge stored secretory granules by an injection of isoproterenol (IPR). Depletion of tissue amylase, increased plasma amylase, and alterations in secretory cell ultrastructure were used to ...
متن کاملProtein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules
We have developed a method for separating purified parotid secretory granules according to their degree of maturation, and we have used this method to examine the relationship between granule formation and stimulus-independent (constitutive) protein secretion. Constitutive export of pulse-labeled secretory proteins occurs almost entirely after their appearance in newly formed granules, and this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of dental research
دوره 84 6 شماره
صفحات -
تاریخ انتشار 2005