Integration of Evolutionary Features for the Identification of Functionally Important Residues in Major Facilitator Superfamily Transporters
نویسندگان
چکیده
The identification of functionally important residues is an important challenge for understanding the molecular mechanisms of proteins. Membrane protein transporters operate two-state allosteric conformational changes using functionally important cooperative residues that mediate long-range communication from the substrate binding site to the translocation pathway. In this study, we identified functionally important cooperative residues of membrane protein transporters by integrating sequence conservation and co-evolutionary information. A newly derived evolutionary feature, the co-evolutionary coupling number, was introduced to measure the connectivity of co-evolving residue pairs and was integrated with the sequence conservation score. We tested this method on three Major Facilitator Superfamily (MFS) transporters, LacY, GlpT, and EmrD. MFS transporters are an important family of membrane protein transporters, which utilize diverse substrates, catalyze different modes of transport using unique combinations of functional residues, and have enough characterized functional residues to validate the performance of our method. We found that the conserved cores of evolutionarily coupled residues are involved in specific substrate recognition and translocation of MFS transporters. Furthermore, a subset of the residues forms an interaction network connecting functional sites in the protein structure. We also confirmed that our method is effective on other membrane protein transporters. Our results provide insight into the location of functional residues important for the molecular mechanisms of membrane protein transporters.
منابع مشابه
Insight into determinants of substrate binding and transport in a multidrug efflux protein.
Multidrug resistance arising from the activity of integral membrane transporter proteins presents a global public health threat. In bacteria such as Escherichia coli, transporter proteins belonging to the major facilitator superfamily make a considerable contribution to multidrug resistance by catalysing efflux of myriad structurally and chemically different antimicrobial compounds. Despite the...
متن کاملEvolutionary mix-and-match with MFS transporters II.
One fundamentally important problem for understanding the mechanism of coupling between substrate and H(+) translocation with secondary active transport proteins is the identification and physical localization of residues involved in substrate and H(+) binding. This information is exceptionally difficult to obtain with the Major Facilitator Superfamily (MFS) because of the broad sequence divers...
متن کاملRelocation of active site carboxylates in major facilitator superfamily multidrug transporter LmrP reveals plasticity in proton interactions
The expression of polyspecific membrane transporters is one important mechanism by which cells can obtain resistance to structurally different antibiotics and cytotoxic agents. These transporters reduce intracellular drug concentrations to subtoxic levels by mediating drug efflux across the cell envelope. The major facilitator superfamily multidrug transporter LmrP from Lactococcus lactis catal...
متن کاملMajor Facilitator Superfamily (MFS) evolved without 3-transmembrane segment unit rearrangements.
Based on alleged functional residue correspondences, a recent study proposed a model of 3-transmembrane segment (TMS) repeat unit rearrangements in Major Facilitator Superfamily (MFS) carriers (1). A rebuttal of “Evolutionary mix-and-match with MFS transporters” (1) is currently in press in the Journal of Molecular Microbiology and Biotechnology (2). In their follow-up paper, “Evolutionary mix-...
متن کاملEvidence of evolutionary conservation of function between the thyroxine transporter Oatp1c1 and major facilitator superfamily members.
Organic anion transporting polypeptide 1c1 (Oatp1c1) is a high-affinity T(4) transporter expressed in brain barrier cells. To identify Oatp1c1 amino acid residues critical for T(4) transport, consensus membrane topology was predicted and a three-dimensional Oatp1c1 structure was generated using the known structures of major facilitator superfamily (MFS) transporters, glycerol 3-phosphate transp...
متن کامل