Generalized Almost Distributive Lattices-I
نویسندگان
چکیده
The concept of a GADL as a generalization of an ADL is introduced. Necessary and sufficient conditions for a GADL to become a distributive lattice and a GADL to become an ADL are obtained. We also study the maximal sets in a GADL and give equivalent conditions for a GADL to become a distributive lattice in terms of maximal
منابع مشابه
On generalized topological molecular lattices
In this paper, we introduce the concept of the generalized topological molecular lattices as a generalization of Wang's topological molecular lattices, topological spaces, fuzzy topological spaces, L-fuzzy topological spaces and soft topological spaces. Topological molecular lattices were defined by closed elements, but in this new structure we present the concept of the open elements and defi...
متن کاملFormalization of Generalized Almost Distributive Lattices
Almost Distributive Lattices (ADL) are structures defined by Swamy and Rao [11] as a common abstraction of some generalizations of the Boolean algebra. In our paper, we deal with a certain further generalization of ADLs, namely the Generalized Almost Distributive Lattices (GADL). Our main aim was to give the formal counterpart of this structure and we succeeded formalizing all items from the Se...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملOn Ideals and Congruences of Generalized Almost Distributive Lattices
Necessary and sufficient conditions for a GADL to become an ADL are obtained interms of congruence relations and proved that every associative GADL is an ADL.
متن کاملFinite distributive lattices are congruence lattices of almost- geometric lattices
A semimodular lattice L of finite length will be called an almost-geometric lattice, if the order J(L) of its nonzero join-irreducible elements is a cardinal sum of at most two-element chains. We prove that each finite distributive lattice is isomorphic to the lattice of congruences of a finite almost-geometric lattice.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009