An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.

نویسندگان

  • William C DeLoache
  • Zachary N Russ
  • Lauren Narcross
  • Andrew M Gonzales
  • Vincent J J Martin
  • John E Dueber
چکیده

Benzylisoquinoline alkaloids (BIAs) are a diverse family of plant-specialized metabolites that include the pharmaceuticals codeine and morphine and their derivatives. Microbial synthesis of BIAs holds promise as an alternative to traditional crop-based manufacturing. Here we demonstrate the production of the key BIA intermediate (S)-reticuline from glucose in Saccharomyces cerevisiae. To aid in this effort, we developed an enzyme-coupled biosensor for the upstream intermediate L-3,4-dihydroxyphenylalanine (L-DOPA). Using this sensor, we identified an active tyrosine hydroxylase and improved its L-DOPA yields by 2.8-fold via PCR mutagenesis. Coexpression of DOPA decarboxylase enabled what is to our knowledge the first demonstration of dopamine production from glucose in yeast, with a 7.4-fold improvement in titer obtained for our best mutant enzyme. We extended this pathway to fully reconstitute the seven-enzyme pathway from L-tyrosine to (S)-reticuline. Future work to improve titers and connect these steps with downstream pathway branches, already demonstrated in S. cerevisiae, will enable low-cost production of many high-value BIAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformation and expression of Penicillium funicolusum glucose oxidase gene in yeast

Glucose oxidase is an important enzyme hydrolyzing for its hydrolyzing activity on glucos. It possesses and has a wide board of applications in different industries such as bakery, pharmaceutical, plant pathology and biosensors. In this study, yeast (Saccharomyces cerevisiae) was transformed successfully by the glucose oxidase gene (gox) obtained from Penicillium funicolusum. The secreted gluco...

متن کامل

Efficient microbial production of stylopine using a Pichia pastoris expression system.

Stylopine is a protoberberine-type alkaloid that has potential biological activities. Based on the successful microbial production of (S)-reticuline, we attempted to produce stylopine from (S)-reticuline by the reaction of berberine bridge enzyme, cheilanthifoline synthase (CYP719A5), and stylopine synthase (CYP719A2). Biosynthetic enzyme expression was examined in a methanol-utilizing yeast (P...

متن کامل

Facile Synthesis and Electrochemical Performance of Graphene-Modified Cu2O Nanocomposite for Use in Enzyme-Free Glucose Biosensor

Graphene-modified Cu2O nanocomposite was synthesized under facile microwave irradiation of an aqueous solution and has been investigated as an enzyme-free glucose biosensor. Morphology and crystal structure of the graphene-modified Cu2O nanocomposite were investigated by using electron microscopy and X-Ray Diffraction (XRD) analyses. Also, the electrochemical performan...

متن کامل

Chapter Iv: Production of (r, S)-reticuline and Downstream Benzylisoquinoline Alkaloids in Saccharomyces Cerevisiae

The benzylisoquinoline alkaloids (BIAs) are a diverse class of plant secondary metabolites that exhibit a broad range of pharmacological activities and are synthesized through biosynthetic pathways that exhibit complex enzyme activities and regulatory strategies. We have engineered yeast to produce the major branch point intermediate reticuline and downstream BIA metabolites from a commercially...

متن کامل

Modification of Glucose biosensor using Pt/MWCNTs electrode and optimization by application of taguchi method

In this paper, multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemical biology

دوره 11 7  شماره 

صفحات  -

تاریخ انتشار 2015