New Hybrid Algorithm of Modified Halpern Iteration Scheme for Quasi-φ-nearly Asymptotically Nonexpansive Mappings in Banach Spaces
نویسندگان
چکیده
In this paper, we introduce a new hybrid algorithm of modified Halpern iteration for a countable infinitely family of quasi-φ-nearly asymptotically nonexpansive mappings in Banach spaces and prove the strong convergence for the proposed algorithm. Our proof method is of novelty and the results presented in this paper improve the corresponding ones announced by others. Mathematics Subject Classification: 47H05; 47H09; 47J25; 47N10
منابع مشابه
Convergence and Stability of Modified Random SP-Iteration for A Generalized Asymptotically Quasi-Nonexpansive Mappings
The purpose of this paper is to study the convergence and the almost sure T-stability of the modied SP-type random iterative algorithm in a separable Banach spaces. The Bochner in-tegrability of andom xed points of this kind of random operators, the convergence and the almost sure T-stability for this kind of generalized asymptotically quasi-nonexpansive random mappings are obtained. Our result...
متن کاملConvergence results: A new type iteration scheme for two asymptotically nonexpansive mappings in uniformly convex Banach spaces
In this article, we introduce a new type iterative scheme for approximating common fixed points of two asymptotically nonexpansive mappings is defined, and weak and strong convergence theorem are proved for the new iterative scheme in a uniformly convex Banach space. The results obtained in this article represent an extension as well as refinement of previous known resu...
متن کاملNew hybrid method for equilibrium problems and relatively nonexpansive mappings in Banach spaces
In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is presented for finding a common element of the solution set of an equilibrium problem and the set of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given and the numerical behaviour of the sequences generated by this algorithm is compared with several existence...
متن کاملOn The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces
In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.
متن کاملFixed Point of a Countable Family of Uniformly Totally Quasi- Ø -Asymptotically Nonexpansive Multi-Valued Mappings in Reflexive Banach Spaces with Applications
The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- -asymptotically nonexpansive multi-valued mappings and establish some strong convergence theorems under certain conditions. We utilize the theorems to study a modified Halpern-type iterative algorithm for a system of equilibrium problems. The results improve ...
متن کامل