On convex lattice polygons

نویسنده

  • P. R. Scott
چکیده

Let II be a convex lattice polygon with b boundary points and c (5 1) interior points. We show that for any given a , the number b satisfies b 5 2e + 7 , and identify the polygons for which equality holds. A lattice polygon II is a simple polygon whose vertices are points of the integral lattice. We let A = 4(11) denote the area of II , b{U) the number of lattice points on the boundary of II , and e(II) the number of lattice points interior to II. A(n) = %2)(n) + c(n)-1. Nosarzewska [7] and more recently Wills L41, have established inequalities relating the area, perimeter, and number of interior points of a convex lattice polygon. It is our purpose here to establish a simple necessary condition for II to be convex. We set /(II) = Z>(II)-2c(II). Using Pick's formula we can obtain alternative expressions for f(T[) : %/(H) = b{Ti)-A{Jl)-1 and = 4(n)-Lattice polygons which can be obtained from one another using integral unimodular transformations or translations are said to be equivalent. The property of convexity, and the quantities A, b, a , and f are easily seen to be invariant under equivalence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Deviations in the Geometry of Convex Lattice Polygons

We provide a full large deviation principle (LDP) for the uniform measure on certain ensembles of convex lattice polygons. This LDP provides for the analysis of concentration of the measure on convex closed curves. In particular, convergence to a limiting shape results in some particular cases, including convergence to a circle when the ensemble is deened as those centered convex polygons, with...

متن کامل

Osculating and neighbour-avoiding polygons on the square lattice*

We study two simple modifications of self-avoiding polygons (SAPs). Osculating polygons (OP) are a super-set in which we allow the perimeter of the polygon to touch at a vertex. Neighbour-avoiding polygons (NAP) are only allowed to have nearest-neighbour vertices provided these are joined by the associated edge and thus form a sub-set of SAPs. We use the finite lattice method to count the numbe...

متن کامل

A Census of Convex Lattice Polygons with at most one

We find all convex lattice polygons in the plane (up to equivalence) with at most one interior lattice point. A lattice point in the plane is a point with integer coordinates. A lattice segment is a line segment whose endpoints are lattice points. A lattice polygon is a simple polygon whose vertices are lattice points. In 1980, Arkinstall [1] proved that, up to lattice equivalence (defined belo...

متن کامل

Minkowski decomposition of convex lattice polygons

A relatively recent area of study in geometric modelling concerns toric Bézier patches. In this line of work, several questions reduce to testing whether a given convex lattice polygon can be decomposed into a Minkowski sum of two such polygons and, if so, to finding one or all such decompositions. Other motivations for this problem include sparse resultant computation, especially for the impli...

متن کامل

Asymptotic behaviour of convex and column-convex lattice polygons with fixed area and varying perimeter

We study the inflated phase of two dimensional lattice polygons, both convex and column-convex, with fixed area A and variable perimeter, when a weight μ exp[−Jb] is associated to a polygon with perimeter t and b bends. The mean perimeter is calculated as a function of the fugacity μ and the bending rigidity J . In the limit μ → 0, the mean perimeter has the asymptotic behaviour 〈t〉/4 √ A ≃ 1−K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008