Study of enzymatic saccharification of Agave leaves biomass to yield fermentable sugars

نویسندگان

  • Miguel A. Medina-Morales
  • Oscar Soto-Cruz
  • Juan C. Contreras-Esquivel
  • Raúl Rodríguez-Herrera
  • Heliodoro De la Garza-Toledo
  • Cristóbal N. Aguilar
چکیده

Agave is a good source of polysaccharides for the production of fermentable sugars as sustainable bioenergy feedstock solutions for semi-arid and arid lands. This plant grows in arid areas, which correspond to a large territory in northern Mexico. Having lignocellulose as the polysaccharide of interest, the information for the enzymatic saccharification of this kind of material is limited. Agave cell walls have a unique recalcitrant nature, but having a high cellulose content, makes this plant material an interesting research subject. In this work, acidic, alkaline and aqueous pretreatments were evaluated to generate a biomass rich in cellulose. The saccharification of pretreated Agave leaves-residue was evaluated under experimental designs to identify the most suitable conditions for enzymatic hydrolysis. Maximum value obtained was 31% glucose, which further increased to 41.4% at extended hydrolysis time of 96 h. The highest cellulose-saccharification reached was up to 61.81%, making Agave atrovirens an alternative for bioethanol production in its geographical area of cultivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of enzymatic saccharification of microwave pretreated sugarcane tops through response surface methodology for biofuel.

The optimization of biomass loading enzyme loading, surfactant concentration and incubation time, using response surface methodology (RSM) and Box Behnken design for enzymatic saccharification of sugarcane tops (SCT) for maximum recovery of fermentable sugars using crude cellulases, resulted in 90.24% saccharification efficiency. Maximum saccharification yield of 0.376 g/g glucose as substrate ...

متن کامل

Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study

Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particu...

متن کامل

Key Pretreatment Technologies on Cellulosic Ethanol Production

Conversion of lignocellulosic biomass to fuel ethanol involves pretreatments followed by enzyme-catalyzed hydrolysis to generate fermentable sugars. Efficient pretreatment method can significantly enhance hydrolysis of biomass and thus reduce ethanol production cost. Cellulosic plant materials are mainly composed of cellulose, hemicellulose and lignin, the cheapest source of fermentable sugars....

متن کامل

Genetic diversity in chestnuts of Kashmir valley

Corncob is an agriculture waste found to consist of 38.9% cellulose and 43.4% hemicellulose on dry solid (w/w %) basis and thus considered a potential source for fermentable sugars. These sugars can potentially be extracted through combined chemical pretreatment and enzymatic saccharification. The present study is aimed to optimized the pretreatment process by using variety of alkali and acids ...

متن کامل

Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions.

BACKGROUND The emerging bioeconomy depends on improved methods for processing of lignocellulosic biomass to fuels and chemicals. Saccharification of lignocellulose to fermentable sugars is a key step in this regard where enzymatic catalysis plays an important role and is a major cost driver. Traditionally, enzyme cocktails for the conversion of cellulose to fermentable sugars mainly consisted o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017