Pavelka-style Fuzzy Logic for Attribute Implications

نویسندگان

  • Radim Belohlávek
  • Vilém Vychodil
چکیده

We present Pavelka-style fuzzy logic for reasoning about attribute implications, i.e. formulas A ⇒ B known also as association rules and functional dependencies. Fuzzy attribute implications allow for two different interpretations, namely, in data tables with graded (fuzzy) attributes and in data tables over domains with similarity relations. In the first interpretation, A ⇒ B reads “each object having all attributes from A has also all attributes from B”. In the second interpretation, A ⇒ B reads “any two table rows which have similar values on attributes from A have similar values on attributes from B”. The axioms of our logic are inspired by well-known Armstrong axioms but the logic allows us to infer partially true formulas from partially true formulas. We prove soundness and completeness of our logic in graded style, i.e. we prove that a degree to which an attribute implication A ⇒ B semantically follows from a collection T of partially true attribute implications equals a degree to which A ⇒ B is provable from T .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy attribute logic: syntactic entailment and completeness

Fuzzy attribute implications are particular if-then rules which can be extracted from data tables with fuzzy attributes. We develop fuzzy attribute logic (FAL), its syntax, semantics, and prove a classical as well as Pavelka-style completeness theorem for FAL. Also, we present relationships to completeness of sets of attribute implications w.r.t. data tables. Because of the limited scope of the...

متن کامل

Rational fuzzy attribute logic

We present a logic for reasoning with if-then formulas which involve constants for rational truth degrees from the unit interval. We introduce graded semantic and syntactic entailment of formulas. We prove the logic is complete in Pavelka style and depending on the choice of structure of truth degrees, the logic is a decidable fragment of the Rational Pavelka logic (RPL) or the Rational Product...

متن کامل

Fuzzy Horn logic I

The paper presents generalizations of results on so-called Horn logic, well-known in universal algebra, to the setting of fuzzy logic. The theories we consider consist of formulas which are implications between identities (equations) with premises weighted by truth degrees. We adopt Pavelka style: theories are fuzzy sets of formulas and we consider degrees of provability of formulas from theori...

متن کامل

Fuzzy logic programming reduced to reasoning with attribute implications

We present a link between two types of logic systems for reasoning with graded if–then rules: the system of fuzzy logic programming (FLP) in sense of Vojtáš and the system of fuzzy attribute logic (FAL) in sense of Belohlavek and Vychodil. We show that each finite theory consisting of formulas of FAL can be represented by a definite program so that the semantic entailment in FAL can be characte...

متن کامل

Pavelka-style fuzzy logic in retrospect and prospect

We trace the origin and development of Pavelka-style fuzzy logic, discuss its significance and clarify some related misconceptions. © 2015 Elsevier B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006