Homological Invariants and Quasi - Isometry

نویسنده

  • ROMAN SAUER
چکیده

Building upon work of Y. Shalom we give a homological-algebra flavored definition of an induction map in group homology associated to a topological coupling. As an application we obtain that the cohomological dimension cdR over a commutative ring R satisfies the inequality cdR(Λ) ≤ cdR(Γ) if Λ embeds uniformly into Γ and cdR(Λ) < ∞ holds. Another consequence of our results is that the Hirsch ranks of quasi-isometric solvable groups coincide. Further, it is shown that the real cohomology rings of quasi-isometric nilpotent groups are isomorphic as graded rings. On the analytic side, we apply the induction technique to Novikov-Shubin invariants of amenable groups, which can be seen as homological invariants, and show their invariance under quasi-isometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filling Invariants at Infinity and the Euclidean Rank of Hadamard Spaces

In this paper we study a homological version of the asymptotic filling invariant divk defined by Brady and Farb in [BrFa] and show that it is a quasi-isometry invariant for all proper cocompact Hadamard spaces, i.e. proper cocompact CAT(0)-spaces, and that it can furthermore be used to detect the Euclidean rank of such spaces. We thereby extend results of [BrFa, Leu, Hin] from the setting of sy...

متن کامل

Quasi-isometry Invariance of Novikov-shubin Invariants for Amenable Groups

We use the notion of uniform measure equivalence to prove that the Novikov-Shubin invariants resp. the capacities of amenable groups are invariant under quasi-isometry. Further, we comment on the connection to Gaboriau’s theorem on the invariance of L-Betti numbers under orbit equivalence.

متن کامل

Filling-invariants at Infinity for Manifolds of Nonpositive Curvature Noel Brady and Benson Farb

Homological invariants “at infinity” and (coarse) isoperimetric inequalities are basic tools in the study of large-scale geometry (see e.g., [Gr]). The purpose of this paper is to combine these two ideas to construct a family divk(X ), 0 ≤ k ≤ n − 2 , of geometric invariants for Hadamard manifolds X 1 . The divk(X ) are meant to give a finer measure of the spread of geodesics in X ; in fact the...

متن کامل

Groups Acting on Semimetric Spaces and Quasi-isometries of Monoids

We study groups acting by length-preserving transformations on spaces equipped with asymmetric, partially-defined distance functions. We introduce a natural notion of quasi-isometry for such spaces and exhibit an extension of the Švarc-Milnor Lemma to this setting. Among the most natural examples of these spaces are finitely generated monoids and semigroups and their Cayley and Schützenberger g...

متن کامل

Filling-invariants at Infinity for Manifolds of Nonpositive Curvature

In this paper we construct and study isoperimetric functions at infinity for Hadamard manifolds. These quasi-isometry invariants give a measure of the spread of geodesics in such a manifold.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008