Rat to human extrapolation of HCFC-123 kinetics deduced from halothane kinetics: a corollary approach to physiologically based pharmacokinetic modeling.
نویسندگان
چکیده
The goal of this study was to develop a human physiologically based pharmacokinetic (PBPK) model for the chemical HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane) and its major metabolite, trifluoroacetic acid (TFA). No human kinetic data for HCFC-123 are available, thus a corollary approach was developed. HCFC-123 is a structural analog of the common anesthetic agent halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) and follows a common pathway of oxidative biotransformation, resulting in the formation of the same metabolite, TFA. In this study, halothane models for rats and humans were developed and validated. Then the corollary approach was used to develop a human HCFC-123 model from a rat HCFC-123 model. This strategy was implemented by using a previously validated PBPK model for HCFC-123/TFA in the Fisher 344 rat as a template model for halothane in rats. Model predictions were then compared to, and were in good agreement with, measured values for the concentration of halothane in rat blood and fat tissue. A human PBPK model for halothane was developed. The identical mode structure (with the exception of the description for the fat compartment) that was used to describe halothane and TFA in the rat was used for describing halothane and TFA in the human. Human physiological parameters for tissue volumes and flows were taken from the literature, and human tissue partition coefficients for halothane were measured in the laboratory. Based on reported similarity in metabolism of halothane by humans and rats, metabolic constants for halothane in the rat were used in the human model, and specific parameters describing the kinetics of TFA were estimated by optimization. The model was validated against human exposure data for halothane from six published studies (expired breath concentrations of halothane and serum/urine data for TFA). A similar approach was then used to derive a human HCFC-123 model for humans from the HCFC-123 rat model. The corollary approach described here illustrates the innovative use of template model structures to aid in the development and validation of models for structural analogs with similar metabolism and activity in biologic systems. Furthermore, given that the PBPK model adequately describes the kinetics of halothane in rats and humans and of HCFC-123 in rats, use of the human PBPK model is proposed for deriving dose-response estimates of human health risks in the absence of human kinetic data.
منابع مشابه
Proposed Approach to Efficiently Develop Physiologically Based Pharmacokinetic (PBPK) & Physiologically Based Pharmacokinetic-Pharmacodynamic (PBPK-PD) Models for Pesticides
The standard approach to extrapolating from animals to humans (inter-species) or across the human population (intra-species) in risk assessment is to apply 10X uncertainty factors. In Science and Decisions: Advancing Risk Assessment (NRC, 2009), the NAS recommends that the agency “...continue and expand use of the best, most current science to support and revise default assumptions.” EPA publis...
متن کاملUnraveling bisphenol A pharmacokinetics using physiologically based pharmacokinetic modeling
Physiologically based pharmacokinetic (PBPK) models integrate both chemical- and system-specific information into a mathematical framework, offering a mechanistic approach to predict the internal dose metrics of a chemical and an ability to perform species and dose extrapolations. Bisphenol A (BPA), because of its ubiquitous presence in a variety of consumer products, has received a considerabl...
متن کاملApplication of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in human plasma.
Estimation of xenobiotic kinetics in humans frequently relies upon extrapolation from experimental data generated in animals. In an accompanying paper, we have presented a unique, generic, physiologically based pharmacokinetic model and described its application to the prediction of rat plasma pharmacokinetics from in vitro data alone. Here we demonstrate the application of the same model, para...
متن کاملPhysiologically based pharmacokinetic modeling of fetal and neonatal manganese exposure in humans: describing manganese homeostasis during development.
Concerns for potential vulnerability to manganese (Mn) neurotoxicity during fetal and neonatal development have been raised due to increased needs for Mn for normal growth, different sources of exposure to Mn, and pharmacokinetic differences between the young and adults. A physiologically based pharmacokinetic (PBPK) model for Mn during human gestation and lactation was developed to predict Mn ...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fundamental and applied toxicology : official journal of the Society of Toxicology
دوره 30 1 شماره
صفحات -
تاریخ انتشار 1996