Ac‑hE‑18A‑NH2, a novel dual‑domain apolipoprotein mimetic peptide, inhibits apoptosis in macrophages by promoting cholesterol efflux.
نویسندگان
چکیده
A novel synthetic dual-domain apolipoprotein (apo)-mimetic peptide, Ac-hE-18A-NH2, has been proposed to possess several apo A-I- and apo E-mimetic properties. This study investigated the protective effect of this peptide on oxidized low-density lipoprotein (ox-LDL)-induced apoptosis in RAW264.7 cells. For this purpose, RAW264.7 cells were exposed to 50 µg/ml ox-LDL for 48 h, and then incubated with the peptide Ac-hE-18A-NH2 at various concentrations. Apoptosis was detected using annexin V-fluorescein isothiocyanate staining and flow cytometric analysis. The study revealed that the peptide Ac-hE-18A-NH2 (1, 10 and 50 µg/ml) inhibited ox-LDL-mediated apoptosis, and this was accompanied by an increased rate of intracellular cholesterol efflux, and decreased total cholesterol levels in the cells in a concentration-dependent manner. The peptide also decreased caspase-3 activity and increased B-cell lymphoma 2 protein (Bcl-2) expression in macrophages in a dose-dependent manner. Moreover, blockage of cholesterol efflux by brefeldin A decreased the protective effect of Ac-hE-18A-NH2 against ox-LDL induced apoptosis, while increasing the cholesterol efflux by β-cyclodextrin administration led to a marked decrease in the rate of apoptosis of the cells. These findings demonstrate that the apo-mimetic peptide Ac-hE-18A-NH2 exerts a protective effect against apoptosis by reducing the accumulation of cholesterol.
منابع مشابه
Apolipoprotein E mimetic Peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits.
BACKGROUND These studies were designed to determine whether the dual-domain peptide with a class A amphipathic helix linked to the receptor-binding domain of apolipoprotein (apo) E (Ac-hE-18A-NH2) possesses both antidyslipidemic and antiinflammatory properties. METHODS AND RESULTS A single bolus (15 mg/kg IV) of Ac-hE-18A-NH2 that contains LRKLRKRLLR (141- to 150-residue region of apo E) cova...
متن کاملCationic domain 141-150 of apoE covalently linked to a class A amphipathic helix enhances atherogenic lipoprotein metabolism in vitro and in vivo.
We previously showed 1 that a peptide, Ac-hE18A-NH(2), in which the arginine-rich heparin-binding domain of apolipoprotein E (apoE) [residues 141;-150] (LRKLRKRLLR), covalently linked to 18A (DWLKAFYDKVAEKLKEAF; a class A amphipathic helix with high lipid affinity), enhanced LDL uptake and clearance. Because VLDL and remnants contain more cholesterol per particle than LDL, enhanced hepatic clea...
متن کاملHydrophobic amino acids in the hinge region of the 5A apolipoprotein mimetic peptide are essential for promoting cholesterol efflux by the ABCA1 transporter.
The bihelical apolipoprotein mimetic peptide 5A effluxes cholesterol from cells and reduces inflammation and atherosclerosis in animal models. We investigated how hydrophobic residues in the hinge region between the two helices are important in the structure and function of this peptide. By simulated annealing analysis and molecular dynamics modeling, two hydrophobic amino acids, F-18 and W-21,...
متن کاملABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages.
OBJECTIVE We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. A...
متن کاملFAMP, a Novel ApoA‐I Mimetic Peptide, Suppresses Aortic Plaque Formation Through Promotion of Biological HDL Function in ApoE‐Deficient Mice
BACKGROUND Apolipoprotein (apo) A-I is a major high-density lipoprotein (HDL) protein that causes cholesterol efflux from peripheral cells through the ATP-binding cassette transporter A1 (ABCA1), thus generating HDL and reversing the macrophage foam cell phenotype. Pre-β1 HDL is the smallest subfraction of HDL, which is believed to represent newly formed HDL, and it is the most active acceptor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine reports
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2014