Parametric Bootstrap Approximation to the Distribution of Eblup and Related Prediction Intervals in Linear Mixed Models by Snigdhansu Chatterjee,
نویسندگان
چکیده
Empirical best linear unbiased prediction (EBLUP) method uses a linear mixed model in combining information from different sources of information. This method is particularly useful in small area problems. The variability of an EBLUP is traditionally measured by the mean squared prediction error (MSPE), and interval estimates are generally constructed using estimates of the MSPE. Such methods have shortcomings like under-coverage or over-coverage, excessive length and lack of interpretability. We propose a parametric bootstrap approach to estimate the entire distribution of a suitably centered and scaled EBLUP. The bootstrap histogram is highly accurate, and differs from the true EBLUP distribution by only O(d3n−3/2), where d is the number of parameters and n the number of observations. This result is used to obtain highly accurate prediction intervals. Simulation results demonstrate the superiority of this method over existing techniques of constructing prediction intervals in linear mixed models.
منابع مشابه
Parametric Bootstrap Approximation to the Distribution of Eblup and Related Prediction Intervals in Linear Mixed Models
Empirical best linear unbiased prediction (EBLUP) method uses a linear mixed model in combining information from different sources of information. This method is particularly useful in small area problems. The variability of an EBLUP is traditionally measured by the mean squared prediction error (MSPE), and interval estimates are generally constructed using estimates of the MSPE. Such methods h...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملParametric bootstrap methods for bias correction in linear mixed models
The empirical best linear unbiased predictor (EBLUP) in the linear mixed model (LMM) is useful for the small area estimation, and the estimation of the mean squared error (MSE) of EBLUP is important as a measure of uncertainty of EBLUP. To obtain a second-order unbiased estimator of the MSE, the second-order bias correction has been derived mainly based on Taylor series expansions. However, thi...
متن کاملSemiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملMultivariate Fay-Herriot models for small area estimation
Introduction Multivariate Fay–Herriot models for estimating small area indicators are introduced. Among the available procedures for fitting linear mixed models, the residual maximum likelihood (REML) is employed. The empirical best predictor (EBLUP) of the vector of area means is derived. An approximation to the matrix of mean squared crossed prediction errors (MSE) is given and four MSE estim...
متن کامل