Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries.
نویسندگان
چکیده
The electrochemical behaviour of Co3O4 with sodium is reported here. Upon cycling in the voltage window of 0.01-3.0 V, Co3O4 undergoes a conversion reaction and exhibits a reversible capacity of 447 mA h g(-1) after 50 cycles. Therefore, nanostructured Co3O4 presents feasible electrochemical sodium storage, offering possibilities to develop new anode materials for sodium-ion batteries.
منابع مشابه
Rational Design of 1-D Co3O4 Nanofibers@Low content Graphene Composite Anode for High Performance Li-Ion Batteries
Cobalt oxide that has high energy density, is the next-generation candidate as the anode material for LIBs. However, the practical use of Co3O4 as anode material has been hindered by limitations, especially, low electrical conductivity and pulverization from large volume change upon cycling. These features lead to hindrance to its electrochemical properties for lithium-ion batteries. To improve...
متن کاملOrigin of Capacity Fading in Nano-Sized Co3O4Electrodes: Electrochemical Impedance Spectroscopy Study
Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein,...
متن کاملFew-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries.
Sodium-ion batteries (SIBs) show great potential as alternative energy storage devices for next generation energy storage systems due to the deficiency of lithium resources. MoS2 is a promising anode material for SIBs due to its high theoretical sodium storage capability and large interspace for accommodating sodium ions with a larger ionic radius than lithium ions. However, bulk MoS2 exhibits ...
متن کاملDesigned hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries
Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1(st) step) and solvothermal (2(nd) step) synthesis proc...
متن کاملProbing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography
Materials degradation-the main limiting factor for widespread application of alloy anodes in battery systems-was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 50 39 شماره
صفحات -
تاریخ انتشار 2014