On the Posterior Distribution of the Number of Components in a Finite Mixture
نویسنده
چکیده
The posterior distribution of the number of components k in a finite mixture satisfies a set of inequality constraints. The result holds irrespective of the parametric form of the mixture components and under assumptions on the prior distribution weaker than those routinely made in the literature on Bayesian analysis of finite mixtures. The inequality constraints can be used to perform an “internal” consistency check of MCMC estimates of the posterior distribution of k and to provide improved estimates which are required to satisfy the constraints. Bounds on the posterior probability of k components are derived using the constraints. Implications on prior distribution specification and on the adequacy of the posterior distribution of k as a tool for selecting an adequate number of components in the mixture are also explored.
منابع مشابه
Determination of the number of components in finite mixture distribution with Skew-t-Normal components
Abstract One of the main goal in the mixture distributions is to determine the number of components. There are different methods for determination the number of components, for example, Greedy-EM algorithm which is based on adding a new component to the model until satisfied the best number of components. The second method is based on maximum entropy and finally the third method is based on non...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملOn the Posterior Distribution of the Number of Components in a Finite Mixture by Agostino Nobile
The posterior distribution of the number of components k in a finite mixture satisfies a set of inequality constraints. The result holds irrespective of the parametric form of the mixture components and under assumptions on the prior distribution weaker than those routinely made in the literature on Bayesian analysis of finite mixtures. The inequality constraints can be used to perform an “inte...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کامل