Combined Forecasting of Rainfall Based on Fuzzy Clustering and Cross Entropy

نویسندگان

  • Baohui Men
  • Rishang Long
  • Yangsong Li
  • Huanlong Liu
  • Wei Tian
  • Zhijian Wu
چکیده

Rainfall is an essential index to measure drought, and it is dependent upon various parameters including geographical environment, air temperature and pressure. The nonlinear nature of climatic variables leads to problems such as poor accuracy and instability in traditional forecasting methods. In this paper, the combined forecasting method based on data mining technology and cross entropy is proposed to forecast the rainfall with full consideration of the time-effectiveness of historical data. In view of the flaws of the fuzzy clustering method which is easy to fall into local optimal solution and low speed of operation, the ant colony algorithm is adopted to overcome these shortcomings and, as a result, refine the model. The method for determining weights is also improved by using the cross entropy. Besides, the forecast is conducted by analyzing the weighted average rainfall based on Thiessen polygon in the Beijing–Tianjin–Hebei region. Since the predictive errors are calculated, the results show that improved ant colony fuzzy clustering can effectively select historical data and enhance the accuracy of prediction so that the damage caused by extreme weather events like droughts and floods can be greatly lessened and even kept at bay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined Forecasting of Streamflow Based on Cross Entropy

In this study, we developed a model of combined streamflow forecasting based on cross entropy to solve the problems of streamflow complexity and random hydrological processes. First, we analyzed the streamflow data obtained from Wudaogou station on the Huifa River, which is the second tributary of the Songhua River, and found that the streamflow was characterized by fluctuations and periodicity...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

Forecasting Petroleum Production Using Chaos Time Series Analysis and Fuzzy Clustering

Forecasting of petroleum production time series is a key task underlying scheduling of oil refinery production. In turn, forecasting requires analysing whether time series exhibits chaotic behavior. In this paper we consider chaos analysis based forecasting of time series of gasoline and diesel production. Chaos analysis is based on Lyapunov exponents and includes determination of optimal value...

متن کامل

Entropy-based Consensus for Distributed Data Clustering

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017