Synaptic targeting of retrogradely transported trophic factors in motoneurons: comparison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrophin-1 with tetanus toxin.

نویسندگان

  • Howard B Rind
  • Rafal Butowt
  • Christopher S von Bartheld
چکیده

Glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and cardiotrophin-1 (CT-1) are the most potent neurotrophic factors for motoneurons, but their fate after retrograde axonal transport is not known. Internalized trophic factors may be degraded, or they may be recycled and transferred to other neurons, similar to the known route of tetanus toxin. We tested whether neonatal rat hypoglossal motoneurons target retrogradely transported trophic factors to synaptic sites on their dendrites within the brainstem and subsequently transfer these trophins across the synaptic cleft to afferent synapses (transsynaptic transcytosis). Motoneurons retrogradely transport from the tongue radiolabeled GDNF, BDNF, and CT-1 as well as tetanus toxin. Quantitative autoradiographic electron microscopy showed that GDNF and BDNF were transported into motoneuron dendrites with labeling densities similar to those of tetanus toxin. Although tetanus toxin accumulated rapidly (within 8 h) at presynaptic sites, GDNF accumulated at synapses more slowly (within 15 h), and CT-1 never associated with synapses. Thus, some retrogradely transported neurotrophic factors are trafficked similarly but not identically to tetanus toxin. Both GDNF and BDNF accumulate at the external (limiting) membrane of multivesicular bodies within proximal dendrites. We conclude that tetanus toxin, GDNF, and BDNF are released from postsynaptic sites and are internalized by afferent presynaptic terminals, thus demonstrating transsynaptic transcytosis. CT-1, however, follows a strict degradation pathway after retrograde transport to the soma. Synaptic and transcytotic trafficking thus are restricted to particular neurotrophic factors such as GDNF and BDNF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells

Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...

متن کامل

Implantation of neurotrophic factor-treated sensory nerve graft enhances survival and axonal regeneration of motoneurons after spinal root avulsion.

We previously showed that motor nerves are superior to sensory nerves in promoting axon regeneration after spinal root avulsion. It is, however, impractical to use motor nerves as grafts. One potential approach to enhancing axonal regeneration using sensory nerves is to deliver trophic factors to the graft. Here, we examined the regulation of receptors for brain-derived neurotrophic factor, gli...

متن کامل

Synergistic effects of schwann- and muscle-derived factors on motoneuron survival involve GDNF and cardiotrophin-1 (CT-1).

The survival of central neurons depends on multiple neurotrophic factors produced by different cell types. We demonstrate that media conditioned by muscle and Schwann cell lines show strong synergistic effects on survival of purified embryonic day 14.5 rat motoneurons in culture. Different lines of evidence implicate glial cell line-derived neurotrophic factor (GDNF) and cardiotrophin-1 (CT-1) ...

متن کامل

Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury

To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord contusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the imp...

متن کامل

Pii: S0306-4522(00)00079-8

Glial cell line-derived neurotrophic factor is one of the most potent motoneuron survival factors yet identified. Although retrograde transport of trophic factors to the cell body is thought to be an important process in motoneuron survival, the transport pathways that lead to interaction of glial cell line-derived neurotrophic factor with its receptors is not known. We have used a double ligat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2005