Regulation of the serum concentration of thrombopoietin in thrombocytopenic NF-E2 knockout mice.
نویسندگان
چکیده
The mechanisms that regulate circulating levels of thrombopoietin (Tpo) are incompletely understood. According to one favored model, the rate of Tpo synthesis is constant, whereas the serum concentration of free Tpo is modulated through binding to c-Mpl receptor expressed on blood platelets. Additionally, a role for c-Mpl expressed on megakaryocytes is suggested, particularly by the observation that serum Tpo levels are not elevated in human immune thrombocytopenic purpura. Whereas direct binding of Tpo to platelets has been demonstrated in vitro and in vivo, the role of megakaryocytes in modulating serum Tpo levels has not been addressed experimentally. The profoundly thrombocytopenic mice lacking transcription factor p45 NF-E2 do not show the predicted increase in serum Tpo concentration. To evaluate the fate of the ligand in these animals, we injected 125I-Tpo intravenously into mutant and control mice. In contrast to normal littermates, NF-E2 knockout mice show negligible association of radioactivity with blood cellular components, consistent with an absence of platelets. There is no corresponding increase in plasma-associated radioactivity to suggest persistence in the circulation. However, a greater fraction of the radioligand is bound to hematopoietic tissues. In the bone marrow this is detected virtually exclusively in association with megakaryocytes, whereas in the spleen it is associated with megakaryocytes and small, abnormal, platelet-like particles or megakaryocyte fragments that are found within or in close contact with macrophages. These findings implicate the combination of megakaryocytes and the latter particles as a sink for circulating Tpo in NF-E2 knockout mice, and provide an explanation for the lack of elevated serum Tpo levels in this unique animal model of thrombocytopenia.
منابع مشابه
Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoeitin/MGDF in megakaryocyte development
Despite the importance of blood platelets in health and disease, the mechanisms regulating their formation within megakaryocytes are unknown. We generated mice lacking the hematopoietic subunit (p45) of the heterodimeric erythroid transcription factor NF-E2. Unexpectedly, NF-E2-/- mice lack circulating platelets and die of hemorrhage; their megakaryocytes show no cytoplasmic platelet formation....
متن کاملMice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes.
Mechanisms of platelet production and release by mammalian megakaryocytes are poorly understood. We used thrombocytopenic knockout mice to better understand these processes. Proplatelets are filamentous extensions of terminally differentiated megakaryocytes that are thought to represent one mechanism of platelet release; however, these structures have largely been recognized in cultured cells a...
متن کاملH2-EB1 Molecule Alleviates Allergic Rhinitis Symptoms of H2-Eb1 Knockout Mice
Background: H2-EB1 molecule which is the homolog of Human HLA-DRB1 is proposed to be associated with allergic rhinitis (AR). Construction of H2-Eb1 knockout animal models provides a tool to elucidate the role of H2-EB1 and AR pathogenesis. Objective: To establish the H2-Eb1 knockout model and investigate the H2-EB1 functions in H2-Eb1 knockout mice as a model of AR. Methods: The Cre/Lox...
متن کاملThrombopoietin level in patients with chronic liver diseases.
UNLABELLED Thrombocytopenia and oxidative stress are the most frequent problems in patients with chronic liver diseases as viral cirrhosis and schistosomiasis. So, this study aimed to evaluate the role of thrombopoietin (TPO) on the occurrence of thrombocytopenia and in differentiation between these diseases. It also aimed to investigate the relation between TPO, oxidative stress and antioxidan...
متن کاملOptimized Cytoplasmic Expression of Water Soluble Human Thrombopoietin in Modified Bacterial Strain
Background: Thrombopoietin is a glycoprotein produced by liver and kidney which is responsible for regulating the platelet production. Thrombopoietin is a key ligand with impact on regulating the self-renewal of Hematopoietic stem cells and the regulation of Megakaryocytes progenitors. Previous studies have indicated that only N-terminal domain of this protein has receptor promoting ability. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 90 5 شماره
صفحات -
تاریخ انتشار 1997