Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors

نویسندگان

  • Hengkai Meng
  • Pi Liu
  • Hongbing Sun
  • Zhen Cai
  • Jie Zhou
  • Jianping Lin
  • Yin Li
چکیده

Engineering the cofactor specificity of a natural enzyme often results in a significant decrease in its activity on original cofactor. Here we report that a NADH-dependent dehydrogenase (d-LDH) from Lactobacillus delbrueckii 11842 can be rationally engineered to efficiently use both NADH and NADPH as cofactors. Point mutations on three amino acids (D176S, I177R, F178T) predicted by computational analysis resulted in a modified enzyme designated as d-LDH*. The Kcat/Km of the purified d-LDH* on NADPH increased approximately 184-fold while the Kcat/Km on NADH also significantly increased, showing for the first time that a rationally engineered d-LDH could exhibit comparable activity on both NADPH and NADH. Further kinetic analysis revealed that the enhanced affinity with NADH or NADPH and the significant increased Kcat of d-LDH* resulted in the significant increase of d-LDH* activity on both NADPH and NADH. This study thus demonstrated that the cofactor specificity of dehydrogenase can be broadened by using targeted engineering approach, and the engineered enzyme can efficiently function in NADH-rich, or NADPH-rich, or NADH and NADPH-rich environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy

It is increasingly attractive to engineer cyanobacteria for bulk production of chemicals from CO2. However, cofactor bias of cyanobacteria is different from bacteria that prefer NADH, which hampers cyanobacterial strain engineering. In this study, the key enzyme d-lactate dehydrogenase (LdhD) from Lactobacillus bulgaricus ATCC11842 was engineered to reverse its favored cofactor from NADH to NAD...

متن کامل

Specificity for nicotinamide adenine dinucleotide by nitrate reductase from leaves.

Preliminary work revealed that nitrate reductase in crude extracts prepared from leaves of certain corn genotypes as well as soybeans could utilize NADPH as well as NADH as the electron donor. Isoelectric focusing and diethylaminoethyl cellulose chromatography confirmed previous findings that NADH and NADPH activities could not be separated, which suggests the involvement of a single enzyme. Ni...

متن کامل

Pyridine nucleotide specificity of barley nitrate reductase.

NADPH nitrate reductase activity in higher plants has been attributed to the presence of NAD(P)H bispecific nitrate reductases and to the presence of phosphatases capable of hydrolyzing NADPH to NADH. To determine which of these conditions exist in barley (Hordeum vulgare L. cv. Steptoe), we characterized the NADH and NADPH nitrate reductase activities in crude and affinity-chromatography-purif...

متن کامل

Metabolism of NAD(P)H by blood components. Relevance to bioreductively activated prodrugs in a targeted enzyme therapy system.

NADH was metabolized both by serum components and at the cell surface. The metabolism by serum was either oxidation to NAD+, or hydrolysis of the pyrophosphate to yield nicotinamide mononucleotide (reduced) (NMNH) and AMP. NMNH was further hydrolysed to yield nicotinamide riboside (reduced) (NRH), which was stable. NAD+ was hydrolysed (although at a slower rate than was NADH), but was also redu...

متن کامل

Cofactor Specificity Engineering of Streptococcus mutans NADH Oxidase 2 for NAD(P)+ Regeneration in Biocatalytic Oxidations

Soluble water-forming NAD(P)H oxidases constitute a promising NAD(P)(+) regeneration method as they only need oxygen as cosubstrate and produce water as sole byproduct. Moreover, the thermodynamic equilibrium of O2 reduction is a valuable driving force for mostly energetically unfavorable biocatalytic oxidations. Here, we present the generation of an NAD(P)H oxidase with high activity for both ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016