Insertion of a Specific Fungal 3′-phosphoadenosine-5′-phosphatase Motif into a Plant Homologue Improves Halotolerance and Drought Tolerance of Plants
نویسندگان
چکیده
Soil salinity and drought are among the most serious agricultural and environmental problems of today. Therefore, investigations of plant resistance to abiotic stress have received a lot of attention in recent years. In this study, we identified the complete coding sequence of a 3'-phosphoadenosine-5'-phosphatase protein, ApHal2, from the halotolerant yeast Aureobasidium pullulans. Expression of the ApHAL2 gene in a Saccharomyces cerevisiae hal2 mutant complemented the mutant auxotrophy for methionine, and rescued the growth of the hal2 mutant in media with high NaCl concentrations. A 21-amino-acids-long region of the ApHal2 enzyme was inserted into the Arabidopsis thaliana homologue of Hal2, the SAL1 phosphatase. The inserted sequence included the META motif, which has previously been implicated in increased sodium tolerance of the Hal2 homologue from a related fungal species. Transgenic Arabidopsis plants overexpressing this modified SAL1 (mSAL1) showed improved halotolerance and drought tolerance. In a medium with an elevated salt concentration, mSAL1-expressing plants were twice as likely to have roots in a higher length category in comparison with the wild-type Arabidopsis and with plants overexpressing the native SAL1, and had 5% to 10% larger leaf surface area under moderate and severe salt stress, respectively. Similarly, after moderate drought exposure, the mSAL1-expressing plants showed 14% increased dry weight after revitalisation, with no increase in dry weight of the wild-type plants. With severe drought, plants overexpressing native SAL1 had the worst rehydration success, consistent with the recently proposed role of SAL1 in severe drought. This was not observed for plants expressing mSAL1. Therefore, the presence of this fungal META motif sequence is beneficial under conditions of increased salinity and moderate drought, and shows no drawbacks for plant survival under severe drought. This demonstrates that adaptations of extremotolerant fungi should be considered as a valuable resource for improving stress-tolerance in plant breeding in the future.
منابع مشابه
Investigating the Role of Three Species of Arbuscular Mycorrhizal Fungi on Growth, Acid Phosphatase Enzyme Activity and Phenolic Compounds in Zinnia Plant under Drought Stress Conditions
This experiment was conducted to study the effects of three identified isolates of Arbuscular mycorrhizal fungi (AMF) on growth, acid phosphatase enzyme activity and phenolic compounds (phenol, flavonoid and anthocyanin) of zinnia plants (Zinnia elegans L.var. Magellan Red) under water stress conditions. A factorial (two factors) experiment was planned based on a completely randomized design (C...
متن کاملRegulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice
Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...
متن کاملTransgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling.
The phosphoinositide pathway and inositol-1,4,5-trisphosphate (InsP(3)) are implicated in plant responses to stress. To determine the downstream consequences of altered InsP(3)-mediated signaling, we generated transgenic Arabidopsis thaliana plants expressing the mammalian type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), which specifically hydrolyzes soluble inositol phosphates and t...
متن کاملFungal Infection Alters Phosphate Level and Phosphatase Profiles in Arabidopsis
Phosphorus (P), in the form of phosphate ion (Pi), is a vital element contributing in biomolecule structures, metabolic reactions, signaling pathways and energy transfer within the living cells. The objective of the present study was to assess the influence of fungal infection on Pi metabolism in compare to the effects of phosphate stress in Arabidopsis. Quantification of total P contents showe...
متن کاملExpression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality
Crop genetic engineering mostly aims at improving environmental stress (biotic and abiotic) tolerance as well as nutritional quality. Empowering a single crop with multiple traits is highly demanding and requires manipulation of more than one gene. However, we report improved drought tolerance and fungal resistance along with the increased iron and polyunsaturated fatty acid content in tomato b...
متن کامل