Pd on carbon nanotubes for liquid phase alcohol oxidation
نویسندگان
چکیده
Pd nanoparticles supported on carbon nanotubes (CNTs) showed a higher selectivity than Pd nanoparticles supported on activated carbon (AC) in the liquid phase oxidation of benzylic alcohol to benzaldehyde. Under solventless conditions a significant improvement in selectivity was observed for Pd/CNTs, whereas using Pd/AC a considerable over-oxidation of benzaldehyde was observed. Differently from other solvents cyclohexane improved significantly the selectivity to benzaldehyde for both catalysts. Characterisation by means of transmission electron microscopy revealed differences in metal dispersion between Pd/AC and Pd/CNTs that can be ascribed to textural, chemical and physical differences between Active Carbon and Carbon Nanotubes. The higher activity in the case of Pd on AC than on CNTs can be attributed to the improved Pd dispersion in the first case. On recycling Pd/CNTs resulted more stable (activity loss 50% in 7 runs) than Pd/AC (activity loss 70% in 7 runs) even a structural change of catalysts after reaction is observed. The Pd leaching and particle coalescence are the main reasons for the loss of activity. An extraordinary improving of catalyst life has been observed by alloying the Pd nanoparticles with Au, When CNTs are used as support the strong Pd leaching can be greatly limited and the activity/selectivity maintained at least for 8 runs.
منابع مشابه
Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media
Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...
متن کاملNitrogen functionalized carbon nanostructures supported Pd and Au-Pd NPs as catalyst for alcohols oxidation
Two different carbon nanotubes (CNTs) PR24-PS and Baytubes were functionalized by oxidation with nitric acid and further amination with gaseous NH3. Thus Au and Au-Pd nanoparticles were prepared by PVA/NaBH4 system and anchored on the surface of pristine CNTs and NCNTs (Nitrogen functionalized carbon nanotubes). TEM analysis revealed that the introduction of nitrogen functionalities improves th...
متن کاملSignificant promotion effect of carbon nanotubes on the electrocatalytic activity of supported Pd NPs for ethanol oxidation reaction of fuel cells: the role of inner tubes.
The inner tubes of carbon nanotubes (CNTs) have a significant promotion effect on the electrocatalytic activity of Pd nanoparticles (NPs) for the ethanol oxidation of direct alcohol fuel cells (DAFCs) and Pd NPs supported on CNTs with 3-7 walls show a much higher activity as compared to that supported on typical single-walled and multi-walled CNTs.
متن کاملSelective Oxidation of Lauryl Alcohol to Lauraldehyde under Liquid-Liquid Phase Transfer Catalysis (LL-PTC) with Potassium Chromate as the Oxidizing Agent
In the present research, the selective oxidation of lauryl alcohol to lauraldehyde was studied under liquid-liquid phase transfer conditions using potassium chromate (K2CrO4) as an oxidizing agent and tetrabutyl ammonium bromide (TBAB) as the phase transfer catalyst. Chromium (VI) reagents are used in these oxidations since the alcohols are selectively oxidized <e...
متن کاملGold catalyzed liquid phase oxidation of alcohol: the issue of selectivity.
Commercial carbon nanotubes (CNTs) and carbon nanofibers (CNFs) modified in various ways at the surface have been used as supports for gold nanoparticles (AuNPs) in order to study their influence on the activity/selectivity of catalysts in the aqueous oxidation of alcohol. Particularly oxidative treatment was used to introduce carboxylic functionalities, whereas subsequent treatment with NH3 at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010