NKX3.1 homeodomain protein binds to topoisomerase I and enhances its activity.
نویسندگان
چکیده
The prostate-specific homeodomain protein NKX3.1 is a tumor suppressor that is commonly down-regulated in human prostate cancer. Using an NKX3.1 affinity column, we isolated topoisomerase I (Topo I) from a PC-3 prostate cancer cell extract. Topo I is a class 1B DNA-resolving enzyme that is ubiquitously expressed in higher organisms and many prokaryotes. NKX3.1 interacts with Topo I to enhance formation of the Topo I-DNA complex and to increase Topo I cleavage of DNA. The two proteins interacted in affinity pull-down experiments in the presence of either DNase or RNase. The NKX3.1 homeodomain was essential, but not sufficient, for the interaction with Topo I. NKX3.1 binding to Topo I occurred independently of the Topo I NH2-terminal domain. The binding of equimolar amounts of Topo I to NKX3.1 caused displacement of NKX3.1 from its cognate DNA recognition sequence. Topo I activity in prostates of Nkx3.1+/- and Nkx3.1-/- mice was reduced compared with wild-type mice, whereas Topo I activity in livers, where no NKX3.1 is expressed, was independent of Nkx3.1 genotype. Endogenous Topo I and NKX3.1 could be coimmunoprecipitated from LNCaP cells, where NKX3.1 and Topo I were found to colocalize in the nucleus and comigrate within the nucleus in response to either gamma-irradiation or mitomycin C exposure, two DNA-damaging agents. This is the first report that a homeodomain protein can modify the activity of Topo I and may have implications for organ-specific DNA replication, transcription, or DNA repair.
منابع مشابه
NKX3.1 activates cellular response to DNA damage.
The prostate-specific tumor suppressor homeodomain protein NKX3.1 is inactivated by a variety of mechanisms in the earliest phases of prostate carcinogenesis and in premalignant regions of the prostate gland. The mechanisms by which NKX3.1 exercises tumor suppression have not been well elucidated. Here, we show that NKX3.1 affects DNA damage response and cell survival after DNA damage. NKX3.1 e...
متن کاملThe Tumor Suppressor NKX3.1 Is Targeted for Degradation by DYRK1B Kinase.
UNLABELLED NKX3.1 is a prostate-specific homeodomain protein and tumor suppressor whose expression is reduced in the earliest phases of prostatic neoplasia. NKX3.1 expression is not only diminished by genetic loss and methylation, but the protein itself is a target for accelerated degradation caused by inflammation that is common in the aging prostate gland. NKX3.1 degradation is activated by p...
متن کاملOncogenes and Tumor Suppressors The Tumor Suppressor NKX3.1 Is Targeted for Degradation by DYRK1B Kinase
NKX3.1 is a prostate-specific homeodomain protein and tumor suppressor whose expression is reduced in the earliest phases of prostatic neoplasia. NKX3.1 expression is not only diminished by genetic loss and methylation, but the protein itself is a target for accelerated degradation caused by inflammation that is common in the aging prostate gland. NKX3.1 degradation is activated by phosphorylat...
متن کاملGerm-line mutation of NKX3.1 cosegregates with hereditary prostate cancer and alters the homeodomain structure and function.
NKX3.1, a gene mapped to 8p21, is a member of the NK class of homeodomain proteins and is expressed primarily in the prostate. NKX3.1 exerts a growth-suppressive and differentiating effect on prostate epithelial cells. Because of its known functions and its location within a chromosomal region where evidence for prostate cancer linkage and somatic loss of heterozygosity is found, we hypothesize...
متن کاملFunctional analysis of NKX3.1 in LNCaP prostate cancer cells by RNA interference.
The function of the androgen-regulated homeobox protein NKX3.1 in prostate cancer is controversial. NKX3.1 is necessary for correct prostate development and undergoes frequent allelic loss in prostate cancer. However, no mutations occur in the coding region and some particularly aggressive cancers over-express the protein. Nevertheless NKX3.1 is often referred to as candidate tumor suppressor g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 2 شماره
صفحات -
تاریخ انتشار 2007