Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of photosystem II.

نویسندگان

  • Frank L de Weerd
  • Ivo H M van Stokkum
  • Herbert van Amerongen
  • Jan P Dekker
  • Rienk van Grondelle
چکیده

The pigment-protein complexes CP43 and CP47 transfer excitation energy from the peripheral antenna of photosystem II toward the photochemical reaction center. We measured the excitation dynamics of the chlorophylls in isolated CP43 and CP47 complexes at 77 K by time-resolved absorbance-difference and fluorescence spectroscopy. The spectral relaxation appeared to occur with rates of 0.2-0.4 ps and 2-3 ps in both complexes, whereas an additional relaxation of 17 ps was observed only in CP47. Using the 3.8-A crystal structure of the photosystem II core complex from Synechococcus elongatus (A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, and P. Orth, 2001, Nature, 409:739-743), excitation energy transfer kinetics were calculated and a Monte Carlo simulation of the absorption spectra was performed. In both complexes, the rate of 0.2-0.4 ps can be ascribed to excitation energy transfer within a layer of chlorophylls near the stromal side of the membrane, and the slower 2-3-ps process to excitation energy transfer to the calculated lowest excitonic state. We conclude that excitation energy transfer within CP43 and CP47 is fast and does not contribute significantly to the well-known slow trapping of excitation energy in photosystem II.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light-harvesting and structural organization of Photosystem II: from individual complexes to thylakoid membrane.

Photosystem II (PSII) is responsible for the water oxidation in photosynthesis and it consists of many proteins and pigment-protein complexes in a variable composition, depending on environmental conditions. Sunlight-induced charge separation lies at the basis of the photochemical reactions and it occurs in the reaction center (RC). The RC is located in the PSII core which also contains light-h...

متن کامل

Characterization by electron microscopy of dimeric Photosystem II core complexes from spinach with and without CP43

Dimeric associations of the D1-D2-CP47 and D1-D2-CP47-CP43 complexes of Photosystem II from spinach were isolated and purified with sucrose density gradient centrifugation and gel filtration chromatography and analyzed by electron microscopy and image analysis. Images of both preparations show characteristic details in protein density. The location of the CP43 subunit and the way the dimers are...

متن کامل

Multiple redox-active chlorophylls in the secondary electron-transfer pathways of oxygen-evolving photosystem II.

Photosystem II (PS II) is unique among photosynthetic reaction centers in having secondary electron donors that compete with the primary electron donors for reduction of P680(+). We have characterized the photooxidation and dark decay of the redox-active accessory chlorophylls (Chl) and beta-carotenes (Car) in oxygen-evolving PS II core complexes by near-IR absorbance and EPR spectroscopies at ...

متن کامل

Spectroscopic study of CP43 complex and PSI-CP43 supercomplex of the cyanobacterium Synechocystis PCC 6803

The PSI-CP43 supercomplex of the cyanobacterium Synechocystis PCC 6803, grown under iron-starvation conditions, consists of a trimeric core Photosystem I (PSI) complex and an outer ring of 18 CP43 light-harvesting complexes. We have investigated the electronic structure and excitation energy transfer (EET) pathways within the CP43 (also known as the isiA gene product) ring using low-temperat...

متن کامل

Plants switch photosystem at high temperature to protect photosystem II

Plants are often exposed to temperatures of around 40 °C. These temperatures can cause serious damage to photosystems, yet plants can survive with minimum damage. Here, we show that plants switch photosystem to protect photosystem II (PSII) at 40 °C. Using wheat and Arabidopsis seedlings, we investigated the mechanisms of heat-derived damage in the dark and avoidance of damage in the light. Hea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 2002