Using Genetic Algorithm for Identification of Diabetic Retinal Exudates in Digital Color Images

نویسنده

  • Romany Fouad Mansour
چکیده

Blood vessels in ophthalmoscope images play an important role in diagnosis of some serious pathology on retinal images. Hence, accurate extraction of vessels is becoming a main topic of this research area. In this paper, a new hybrid approach called the (Genetic algorithm and vertex chain code) for blood vessel detection. And this method uses geometrical parameters of retinal vascular tree for diagnosing of hypertension and identified retinal exudates automatically from color retinal images. The skeletons of the segmented trees are produced by thinning. Three types of landmarks in the skeleton must be detected: terminal points, bifurcation and crossing points, these points are labeled and stored as a chain code. Results of the proposed system can achieve a diagnostic accuracy with 96.0% sensitivity and 98.4% specificity for the identification of images containing any evidence of retinopathy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal

Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...

متن کامل

Automatic Detection of Exudates in Digital Retinal Images

Exudate is one of the serious complications and a major cause of blindness in diabetic retinopathy patients. Nowadays, the digital retinal image is frequently used to follow-up and diagnoses eye diseases. Therefore, the retinal image is crucial and essential for expert to detect of exudates. Unfortunately, the retinal images in Thailand are poor quality image. Detecting exudates in a large numb...

متن کامل

Automated identification of diabetic retinal exudates in digital colour images.

AIM To identify retinal exudates automatically from colour retinal images. METHODS The colour retinal images were segmented using fuzzy C-means clustering following some key preprocessing steps. To classify the segmented regions into exudates and non-exudates, an artificial neural network classifier was investigated. RESULTS The proposed system can achieve a diagnostic accuracy with 95.0% s...

متن کامل

A Study and Comparison of Automated Techniques for Exudate Detection Using Digital Fundus Images of Human Eye: A Review for Early Identification of Diabetic Retinopathy

Exudates are a visible sign of diabetic retinopathy which is the major cause of blindness in patients with diabetes. If the exudates extend into the macular area, vision loss can occur. Automated early detection of the presence of exudates can assist ophthalmologists to prevent the spread of the disease more efficiently. Hence, detection of exudates is an important diagnostic task. Exudates are...

متن کامل

Genetic Algorithm for Retinal Image Analysis

Diabetic Retinopathy is one of the leading causes of blindness. Hard exudates have been found to be one of the most prevalent earliest clinical signs of retinopathy. Thus, identification and classification of hard exudates from retinal images is clinically significant. For this purpose the images from the hospitals were taken as reference. In this work, Genetic Algorithm (GA) for best feature s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013