Single Nanoparticle Plasmonic Sensors
نویسندگان
چکیده
The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.
منابع مشابه
Plasmonic imaging of electrochemical oxidation of single nanoparticles.
Measuring electrochemical activities of nanomaterials is critical for creating novel catalysts, for developing ultrasensitive sensors, and for understanding fundamental nanoelectrochemistry. However, traditional electrochemical methods measure a large number of nanoparticles, which wash out the properties of individual nanoparticles. We report here a study of transient electrochemical oxidation...
متن کاملDNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.
Plasmonic sensors are extremely promising candidates for label-free single-molecule analysis but require exquisite control over the physical arrangement of metallic nanostructures. Here we employ self-assembly based on the DNA origami technique for accurate positioning of individual gold nanoparticles. Our innovative design leads to strong plasmonic coupling between two 40 nm gold nanoparticles...
متن کاملGraphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing.
Graphene oxide (GO) is an emerging material for surface-enhanced Raman scattering (SERS) due to its strong chemical enhancement. Studying the SERS performance of plasmonic nanoparticle/GO hybrid materials at the single particle level is crucial for direct probing of the chemical effect of GO on plasmonic nanoparticles. In this work, we integrate GO and shape-controlled Ag nanoparticles to creat...
متن کاملPlasmonic Sensors for Identification and Determination of Escherichia Coli Pathogenic bacterial concentration
This article has no abstract.
متن کاملReusable plasmonic aptasensors: using a single nanoparticle to establish a calibration curve and to detect analytes.
We demonstrate plasmonic aptasensors that allow a single nanoparticle (NP) to generate a calibration curve and to detect analytes. The proposed reusable aptasensors have significant advantages over conventional single-NP based assays in terms of sensitivity and reproducibility.
متن کامل