Modeling the seismic signature of structural data from the Oman Ophiolite: Can a mantle diapir be detected beneath the East Pacific Rise?

نویسندگان

  • David Jousselin
  • Robert Dunn
  • Douglas R. Toomey
  • Susumu Umino
چکیده

[1] We present modeling of the seismic delay time signature of mantle diapirs mapped in the Oman ophiolite and compare these results with those of active source seismic experiments conducted along the East Pacific Rise. To do so, we construct models of shallow-mantle, seismic anisotropy that are consistent with Oman diapirs of different size. Forward calculations of the delay time anomalies due to a combination of diapirrelated seismic anisotropy and isotropic velocity structure are compared with those of a two-dimensional anisotropy field within the same isotropic velocity structure. In the presence of an isotropic, low-velocity anomaly comparable to that imaged beneath the East Pacific Rise, there are only minor differences between the predicted signals of twoand three-dimensional (diapiric) flow. Tomographic modeling is used to determine if the synthetic data for a diapiric model (with a low-velocity isotropic anomaly) can be fit by twodimensional anisotropy and three-dimensional velocity variations. The recovered isotropic anomalies are in good agreement with the synthetic model. However, if the diapir is large enough, artifacts are generated near the corners of the model and, locally, at the ridge axis, with slightly higher velocities. Our results indicate that tomographic analyses of existing travel time data from the East Pacific Rise cannot be used to rule out the presence of diapirs beneath an active spreading center if they are similar in scale to those mapped in Oman.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mantle seismic structure beneath the MELT region of the east pacific rise from P and S wave tomography

Relative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magni...

متن کامل

Geometry and P and S velocity structure of the ‘‘African Anomaly’’

[1] We constrain the geometry and P and S velocity structure of a low-velocity anomaly in the lower mantle beneath southern Africa (we term it the ‘‘African Anomaly’’) on the basis of forward traveltime and waveform modeling of seismic data sampling a great arc across the anomaly from the East Pacific Rise to the Japan Sea. Our collected data set consists of direct S, direct P, Sdiff, ScS, PcP,...

متن کامل

Imaging the Deep Seismic Structure Beneath a Mid-Ocean Ridge: The MELT Experiment

The Mantle Electromagnetic and Tomography (MELT ) Experiment was designed to distinguish between competing models of magma generation beneath mid-ocean ridges. Seismological observations demonstrate that basaltic melt is present beneath the East Pacific Rise spreading center in a broad region several hundred kilometers across and extending to depths greater than 100 kilometers, not just in a na...

متن کامل

Nature and evolution of the lithospheric mantle beneath the passive margin of East Oman: evidence from mantle xenoliths sampled by Cenozoic alkaline lavas

24 25 Cenozoic alkaline lavas from the Al Ashkharah area, facing the Indian ocean along 26 the North-East Oman coastline, contain numerous small (‹ 2cm) mantle xenoliths. 27 They provide a unique opportunity to investigate the nature and evolution of the 28 upper mantle beneath the Oman passive margin, bordering the Owen Basin. All 29 studied xenoliths are porphyroclastic to equigranular spinel...

متن کامل

Evidence and implications of crustal magmatism on the flanks of the East Pacific Rise

a r t i c l e i n f o Keywords: East Pacific Rise mid-ocean ridge oceanic crust off-axis magmatism waveform modeling Formation of oceanic crust along the East Pacific Rise is thought to be complete within a few kilometers of the rise axis. Here, however, we present evidence for magmatism 20 km from the spreading center in 300-ka-old crust. Seismic data reveal an intrusive complex ~ 2 km beneath...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003