Structure, evolution and function of the bi-directionally transcribed iab-4/iab-8 microRNA locus in arthropods
نویسندگان
چکیده
In Drosophila melanogaster, the iab-4/iab-8 locus encodes bi-directionally transcribed microRNAs that regulate the function of flanking Hox transcription factors. We show that bi-directional transcription, temporal and spatial expression patterns and Hox regulatory function of the iab-4/iab-8 locus are conserved between fly and the beetle Tribolium castaneum. Computational predictions suggest iab-4 and iab-8 microRNAs can target common sites, and cell-culture assays confirm that iab-4 and iab-8 function overlaps on Hox target sites in both fly and beetle. However, we observe key differences in the way Hox genes are targeted. For instance, abd-A transcripts are targeted only by iab-8 in Drosophila, whereas both iab-4 and iab-8 bind to Tribolium abd-A. Our evolutionary and functional characterization of a bi-directionally transcribed microRNA establishes the iab-4/iab-8 system as a model for understanding how multiple products from sense and antisense microRNAs target common sites.
منابع مشابه
MicroRNAs in the Drosophila bithorax complex.
The iab-4 noncoding RNA from the Drosophila bithorax complex is the substrate for a microRNA (miRNA). Gene conversion was used to delete the hairpin precursor of this miRNA; flies homozygous for this deletion are sterile. Surprisingly, this mutation complements with rearrangement breakpoint mutations that disrupt the iab-4 RNA but fails to complement with breaks mapping in the iab-5 through iab...
متن کاملFunctionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci.
Many microRNA (miRNA) loci exhibit compelling hairpin structures on both sense and antisense strands; however, the possibility that a miRNA gene might produce functional species from its antisense strand has not been examined. We report here that antisense transcription of the Hox miRNA locus mir-iab-4 generates the novel pre-miRNA hairpin mir-iab-8, which is then processed into endogenous matu...
متن کاملThe Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings.
The Drosophila Bithorax Complex encodes three well-characterized homeodomain proteins that direct segment identity, as well as several noncoding RNAs of unknown function. Here, we analyze the iab-4 locus, which produces the microRNAs iab-4-5p and iab-4-3p. iab-4 is analogous to miR-196 in vertebrate Hox clusters. Previous studies demonstrate that miR-196 interacts with the Hoxb8 3' untranslated...
متن کاملInteratrial Block: A Virtual Pandemic Requiring Attention
Interatrial block (IAB) denotes a conduction delay between the two atria (P-wave duration ≥110 ms). Depending on the severity of the block, IAB can be partial or advanced. Even though several studies have reported a high prevalence of IAB, it still remains a diagnosis many neglect without any follow-up. The crisis in IAB is undramatic until predictable complications appear. Nevertheless, the da...
متن کاملFollowing the intracellular localization of the iab-8ncRNA of the bithorax complex using the MS2-MCP-GFP system
Homeotic genes are aligned on the chromosome in the order of the segments that they specify along the antero-posterior axis of the fly. In general the genes affecting the more posterior segments repress the more anterior genes, a phenomenon known as "posterior dominance". There is however a noticeable exception to this rule in the central nervous system of Drosophila melanogaster where the post...
متن کامل