Invariant theory for singular α-determinants

نویسندگان

  • Kazufumi Kimoto
  • Masato Wakayama
چکیده

From the irreducible decompositions’ point of view, the structure of the cyclic GLn(C)-module generated by the α-determinant degenerates when α = ± 1 k (1 ≤ k ≤ n − 1) (see [6]). In this paper, we show that − 1 k -determinant shares similar properties which the ordinary determinant possesses. From this fact, one can define a new (relative) invariant called a wreath determinant. Using (GLm, GLn)-duality in the sense of Howe, we obtain an expression of a wreath determinant by a certain linear combination of the corresponding ordinary minor determinants labeled by suitable rectangular shape tableaux. Also we study a wreath determinant analogue of the Vandermonde determinant, and then, investigate symmetric functions such as Schur functions in the framework of wreath determinants. Moreover, we examine coefficients which we call (n, k)-sign appeared at the linear expression of the wreath determinant in relation with a zonal spherical function of a Young subgroup of the symmetric group Snk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 04 11 33 9 v 1 2 5 N ov 2 00 4 An Invariant Charge Model for All q 2 > 0 in QCD and Gluon Condensate

Under assumption of singular behavior of invariant charge α s (q 2) at q 2 ≃ 0 and of large q 2 behavior, corresponding to the perturbation theory up to four loops, a procedure is considered of smooth matching the β-function at a boundary of perturbative and nonperturbative regions. The procedure results in a model for α s for all q 2 > 0 with di-mensionless parameters being fixed and dimension...

متن کامل

Relative perturbation theory: IV. sin 2θ theoremsø

The double angle theorems of Davis and Kahan bound the change in an invariant subspace when a Hermitian matrix A is subject to an additive perturbation A → Ã = A+1A. This paper supplies analogous results when A is subject to a congruential, or multiplicative, perturbation A → Ã = D∗AD. The relative gaps that appear in the bounds involve the spectrum of only one matrix, either A or Ã, in contras...

متن کامل

Orbital Normal Forms for a family of-zero Singularity

Consider a Dynamical system x'=F(x,µ) such that its linear part has a pair of imaginary eigenvalues and one zero eigenvalue (Hopf zero singularity). Recently, the simplest normal form for this singular system has been obtained by sl(2) Lie algebra theory and the decomposition of space into three invariant subspaces. The normal form of this singular system is divided into three general cases. In...

متن کامل

The average singular value of a complex random matrix decreases with dimension

We obtain a recurrence relation in d for the average singular value α(d) of a complex valued d × d matrix 1 √ d X with random i.i.d., N (0, 1) entries, and use it to show that α(d) decreases monotonically with d to the limit given by the Marchenko-Pastur distribution. The monotonicity of α(d) has been recently conjectured by Bandeira, Kennedy and Singer in their study of the Little Grothendieck...

متن کامل

Gauge-Invariant Operators for Singular Knots in Chern-Simons Gauge Theory

We construct gauge invariant operators for singular knots in the context of Chern-Simons gauge theory. These new operators provide polynomial invariants and Vassiliev invariants for singular knots. As an application we present the form of the Kontsevich integral for the case of singular knots. CERN-TH/97-360 December 1997

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006