Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments.
نویسندگان
چکیده
UNLABELLED The ozonolysis of terpenoids generates secondary organic aerosol (SOA) indoors. Models of varying complexity have been used to predict indoor SOA formation, and many models use the SOA yield, which is the ratio of the mass of produced SOA and the mass of consumed reactive organic gas. For indoor simulations, the SOA yield has been assumed as a constant, even though it depends on the concentration of organic particles in the air, including any formed SOA. We developed two indoor SOA formation models for single terpenoid ozonolysis, with yields that vary with the organic particle concentration. The models have their own strengths and were in agreement with published experiments for d-limonene ozonolysis. Monte Carlo analyses were performed, which simulated different residential and office environments to estimate ranges of SOA concentrations and yields for d-limonene and α-pinene ozonolysis occurring indoors. Results indicate that yields are highly variable indoors and are most influenced by background organic particles for steady-state formation and indoor ozone concentration for transient peak formation. Additionally, a review of ozonolysis yields for indoor-relevant terpenoids in the literature revealed much uncertainty in their values at low concentrations typical of indoors. PRACTICAL IMPLICATIONS The results in this study suggest important factors that govern indoor secondary organic aerosol (SOA) formation and yields, in typical residential and office spaces. This knowledge informs the development and comparison of control strategies to reduce indoor-generated SOA. The ranges of SOA concentrations predicted indoors allow the quantification of the effects of sorptive interactions of semi-volatile organic compounds or reactive oxygen species with SOA, filter loading owing to SOA formation, and impacts of SOA on health, if links are established.
منابع مشابه
A qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2
The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, 1-carene, and limonene was investigated using a dark flowthrough reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first-generation gasphase chemistry suggests that differences in observed aerosol yie...
متن کاملTransient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.
Secondary organic aerosol (SOA) results from the oxidation of reactive organic gases (ROGs) and is an indoor particle source. The aerosol mass fraction (AMF), a.k.a. SOA yield, quantifies the SOA forming potential of ROGs and is the ratio of generated SOA to oxidized ROG. The AMF depends on the organic aerosol concentration, as well as the prevalence of later generation reactions. AMFs have bee...
متن کاملHygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds
A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA) from simple and substituted cycloalkenes (C5-C8) is produced in dark ozonolysis experiments in a dry chamber (RH∼5%). Biogenic SOA from monoterpenes, sesquiterpenes, and oxy...
متن کاملInfluence of metal-mediated aerosol-phase oxidation on secondary organic aerosol formation from the ozonolysis and OH-oxidation of α-pinene
The organic component is the most abundant fraction of atmospheric submicron particles, while the formation mechanisms of secondary organic aerosol (SOA) are not fully understood. The effects of sulfate seed aerosols on SOA formation were investigated with a series of experiments carried out using a 9 m3 smog chamber. The presence of FeSO4 or Fe2(SO4)3 seed aerosols decreased SOA yields and inc...
متن کاملConstraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments
The effect of vapor-wall deposition on secondary organic aerosol (SOA) formation has gained significant attention; however, uncertainties in experimentally derived SOA mass yields due to uncertainties in particle-wall deposition remain. Different approaches have been used to correct for particle-wall deposition in SOA formation studies, each having its own set of assumptions in determining the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Indoor air
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2012