Receptor guanylyl cyclase Gyc76C is required for invagination, collective migration and lumen shape in the Drosophila embryonic salivary gland

نویسندگان

  • Unisha Patel
  • Monn Monn Myat
چکیده

The Drosophila embryonic salivary gland is formed by the invagination and collective migration of cells. Here, we report on a novel developmental role for receptor-type guanylyl cyclase at 76C, Gyc76C, in morphogenesis of the salivary gland. We demonstrate that Gyc76C and downstream cGMP-dependent protein kinase 1 (DG1) function in the gland and surrounding mesoderm to control invagination, collective migration and lumen shape. Loss of gyc76C resulted in glands that failed to invaginate, complete posterior migration and had branched lumens. Salivary gland migration defects of gyc76C mutant embryos were rescued by expression of wild-type gyc76C specifically in the gland or surrounding mesoderm, whereas invagination defects were rescued primarily by expression in the gland. In migrating salivary glands of gyc76C mutant embryos, integrin subunits localized normally to gland-mesoderm contact sites but talin localization in the surrounding circular visceral mesoderm and fat body was altered. The extracellular matrix protein, laminin, also failed to accumulate around the migrating salivary gland of gyc76C mutant embryos, and gyc76C and laminin genetically interacted in gland migration. Our studies suggest that gyc76C controls salivary gland invagination, collective migration and lumen shape, in part by regulating the localization of talin and the laminin matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptor-Type Guanylyl Cyclase at 76C (Gyc76C) Regulates De Novo Lumen Formation during Drosophila Tracheal Development

Lumen formation and maintenance are important for the development and function of essential organs such as the lung, kidney and vasculature. In the Drosophila embryonic trachea, lumena form de novo to connect the different tracheal branches into an interconnected network of tubes. Here, we identify a novel role for the receptor type guanylyl cyclase at 76C (Gyc76C) in de novo lumen formation in...

متن کامل

Receptor-type guanylyl cyclase Gyc76C is required for development of the Drosophila embryonic somatic muscle

Guanylyl cyclases mediate a number of physiological processes, including smooth muscle function and axonal guidance. Here, we report a novel role for Drosophila receptor-type guanylyl cyclase at 76C, Gyc76C, in development of the embryonic somatic muscle. In embryos lacking function of Gyc76C or the downstream cGMP-dependent protein kinase (cGK), DG1, patterning of the somatic body wall muscles...

متن کامل

The Drosophila receptor guanylyl cyclase Gyc76C is required for semaphorin-1a-plexin A-mediated axonal repulsion.

Cyclic nucleotide levels within extending growth cones influence how navigating axons respond to guidance cues. Pharmacological alteration of cAMP or cGMP signaling in vitro dramatically modulates how growth cones respond to attractants and repellents, although how these second messengers function in the context of guidance cue signaling cascades in vivo is poorly understood. We report here tha...

متن کامل

Function of the Drosophila receptor guanylyl cyclase Gyc76C in PlexA-mediated motor axon guidance.

The second messengers cAMP and cGMP modulate attraction and repulsion mediated by neuronal guidance cues. We find that the Drosophila receptor guanylyl cyclase Gyc76C genetically interacts with Semaphorin 1a (Sema-1a) and physically associates with the Sema-1a receptor plexin A (PlexA). PlexA regulates Gyc76C catalytic activity in vitro, and each distinct Gyc76C protein domain is crucial for re...

متن کامل

The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster

The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013