Monte Carlo method for bioluminescence tomography.
نویسندگان
چکیده
Bioluminescence imaging plays an important role in the areas of cancer biology, cell biology, gene therapy, and so on. The 2D planar bioluminescent imaging has been transformed into a 3D framework by bioluminescence tomography (BLT) that enables bioluminescent source reconstruction in a mouse using a modality fusion approach. To solve this BLT problem, a geometrical model of the mouse is usually built from a CT/micro-CT/micro-MRI scan, which facilitates the assignment of optical parameters to various anatomical regions in the model. This optical model is then used to facilitate BLT. The forward model is based on Monte Carlo simulation to calculate the diffuse light flux on the surface of the mouse. The forward model data are used to define the imaging system and perform the BLT reconstruction. In this paper, we report the reconstruction of sources inside a heterogeneous highly scattering physical phantom to demonstrate the feasibility of this Monte Carlo based BLT method.
منابع مشابه
A Monte-Carlo-Based Network Method for Source Positioning in Bioluminescence Tomography
We present an approach based on the improved Levenberg Marquardt (LM) algorithm of backpropagation (BP) neural network to estimate the light source position in bioluminescent imaging. For solving the forward problem, the table-based random sampling algorithm (TBRS), a fast Monte Carlo simulation method we developed before, is employed here. Result shows that BP is an effective method to positio...
متن کاملSiemens primus accelerator simulation using EGSnrc Monte Carlo code and gel dosimetry validation with optical computed tomography system by EGSnrc code
Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. Monte Carlo modeling of the Siemens Primus linear accelerator in 6 MeV beams was used. Square field size of 10 × 10 cm2 produced by the jaws was compared with TLD. Head simulation of Siemens accele...
متن کاملA Table-Based Random Sampling Simulation for Bioluminescence Tomography
As a popular simulation of photon propagation in turbid media, the main problem of Monte Carlo (MC) method is its cumbersome computation. In this work a table-based random sampling simulation (TBRS) is proposed. The key idea of TBRS is to simplify multisteps of scattering to a single-step process, through randomly table querying, thus greatly reducing the computing complexity of the conventiona...
متن کاملA mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method.
RATIONALE AND OBJECTIVES As an important part of bioluminescence tomography, which is a newly developed optical imaging modality, mouse optical simulation environment (MOSE) is developed to simulate bioluminescent phenomena in the living mouse and to predict bioluminescent signals detectable outside the mouse. This simulator is dedicated to small animal optical imaging based on bioluminescence....
متن کاملAssessment of X-Ray Crosstalk in a Computed Tomography Scanner with Small Detector Elements Using Monte Carlo Method
Introduction: Crosstalk is a leakage of X-ray or light produced in a matrix of X-ray detectors or array of photodiodes in one element to other elements affecting on image contrast and spatial resolution. In this study, we assessed X-ray crosstalk in a computed tomography (CT) scanner with small detector elements to estimate the effect of various parameters such as X-ray tube voltage, detector e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Indian journal of experimental biology
دوره 45 1 شماره
صفحات -
تاریخ انتشار 2007