Parallel Tensor Methods for Nonlinear Equations and Nonlinear Least Squares
نویسندگان
چکیده
We describe the design and computational performance of parallel row-oriented tensor algorithms for the solution of dense systems of nonlinear equations and nonlinear least squares problems on a distributed-memory MIMD multiprocessor. Tensor methods are general purpose methods that base each iteration upon a quadratic model of the nonlinear function, rather than the standard linear model, where the second order term is selected so that the model is hardly more expensive to form, store, or solve than standard models. They have been shown to have substantial advantages in robustness and eeciency on sequential computers. Experimental results obtained on an Intel iPSC2 hypercube show that the tensor method parallelizes virtually as well as a standard method, and that the parallel tensor method obtains nearly full eeciency when the ratio of the number of equations to the number of processors is suuciently large.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملTensor Methods for Large, Sparse Nonlinear Least Squares Problems
This paper introduces tensor methods for solving large, sparse nonlinear least squares problems where the Jacobian either is analytically available or is computed by nite diier-ence approximations. Tensor methods have been shown to have very good computational performance for small to medium-sized, dense nonlinear least squares problems. In this paper we consider the application of tensor metho...
متن کاملPost-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques
In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...
متن کاملTensor Completion
The purpose of this thesis is to explore the methods to solve the tensor completion problem. Inspired by the matrix completion problem, the tensor completion problem is formulated as an unconstrained nonlinear optimization problem, which finds three factors that give a low-rank approximation. Various of iterative methods, including the gradient-based methods, stochastic gradient descent method ...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کامل