Smooth Invariant Foliations in Infinite Dimensional Spaces
نویسنده
چکیده
One of the most useful properties of dynamical systems is the existence of invariant manifolds and their invariant foliations near an equilibrium or a periodic orbit. These manifolds and foliations serve as a convenient setting to describe the qualitative behavior of the local flows, and in many cases they are useful tools for technical estimates which facilitate the study of the local bifurcation diagram (see [6]). Many other important concepts in dynamical systems are closely related to the invariant manifolds and foliations. In finite dimensional space, the relations among invariant manifolds, invariant foliations, l-lemma, linearization, and homoclinic bifurcation have been studied in [ll]. It is well known that if each leaf is used as a coordinate, the original system is completely decoupled and the linearization follows easily (for example, see [27, 221). As a motivation, let us consider a linear system in Rmfn
منابع مشابه
Mangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملEntropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملInfinite Dimensional Lie Groups
Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and fla...
متن کاملRegular Infinite Dimensional Lie Groups
Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and fla...
متن کامل