Chemical synthesis, backbone cyclization and oxidative folding of cystine-knot peptides: promising scaffolds for applications in drug design.

نویسندگان

  • Michael Reinwarth
  • Daichi Nasu
  • Harald Kolmar
  • Olga Avrutina
چکیده

Cystine-knot peptides display exceptional structural, thermal, and biological stability. Their eponymous motif consists of six cysteine residues that form three disulfide bonds, resulting in a notably rigid structural core. Since they highly tolerate either rational or combinatorial changes in their primary structure, cystine knots are considered to be promising frameworks for the development of peptide-based pharmaceuticals. Despite their relatively small size (two to three dozens amino acid residues), the chemical synthesis route is challenging since it involves critical steps such as head-to-tail cyclization and oxidative folding towards the respective bioactive isomer. Herein we describe the topology of cystine-knot peptides, their synthetic availability and briefly discuss potential applications of engineered variants in diagnostics and therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-stable peptide scaffolds for protein engineering-synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2.

The cyclic cystine knot motif, as defined by the cyclotide peptide family, is an attractive scaffold for protein engineering. To date, however, the utilisation of this scaffold has been limited by the inability to synthesise members of the most diverse and biologically active subfamily, the bracelet cyclotides. This study describes the synthesis and first direct oxidative folding of a bracelet ...

متن کامل

Cellular uptake of a cystine-knot peptide and modulation of its intracellular trafficking

Cyclotides or cyclic cystine-knot peptides have emerged as a promising class of pharmacological ligands that modulate protein function. Interestingly, very few cyclotides have been shown to enter into cells. Yet, it remains unknown whether backbone cyclization is required for their cellular internalization. In this report, we studied the cellular behavior of EETI-II, a model acyclic cystine-kno...

متن کامل

Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate.

The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the n...

متن کامل

Interlocking disulfides in circular proteins: toward efficient oxidative folding of cyclotides.

Cyclotides are ultrastable plant proteins characterized by the presence of a cyclic amide backbone and three disulfide bonds that form a cystine knot. Because of their extreme stability, there has been significant interest in developing these molecules as a drug design scaffold. For this potential to be realized, efficient methods for the synthesis and oxidative folding of cyclotides need to be...

متن کامل

Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design.

The cyclotide family of plant proteins is of interest because of their unique topology, which combines a head-to-tail cyclic backbone with an embedded cystine knot, and because their remarkable chemical and biological properties make them ideal candidates as grafting templates for biologically active peptide epitopes. The present study describes the first steps towards exploiting the cyclotide ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2012