Genetic Interactions between Chromosomes 11 and 18 Contribute to Airway Hyperresponsiveness in Mice
نویسندگان
چکیده
We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F₂ and twenty-seven (A/J X C57BL/6J) F₂ mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks--Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans.
منابع مشابه
Tanshinone IIA attenuates ovalbumin-induced airway inflammation and hyperresponsiveness in a murine model of asthma
Objective(s): Tanshinone IIA (T. IIA), one of the most pharmacologically active components extracted from Salviae miltiorrhiza, has anti-inflammatory and antioxidant features. The aim of the present study is to investigate the benefit of T. IIA on asthma using a murine model of asthma induced by ovalbumin (OVA). Materials and Methods: Male BALB/c mice were used in the present study. The mice we...
متن کاملQuantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice.
Identification of the genetic loci underlying asthma in humans has been hampered by variability in clinical phenotype, uncontrolled environmental influences, and genetic heterogeneity. To circumvent these complications, the genetic regulation of asthma-associated phenotypes was studied in a murine model. We characterized the strain distribution patterns for the asthma-related phenotypes airway ...
متن کاملIL-18 Induces Airway Hyperresponsiveness and Pulmonary Inflammation via CD4+ T Cell and IL-13
IL-18 plays a key role in the pathogenesis of pulmonary inflammatory diseases including pulmonary infection, pulmonary fibrosis, lung injury and chronic obstructive pulmonary disease (COPD). However, it is unknown whether IL-18 plays any role in the pathogenesis of asthma. We hypothesized that overexpression of mature IL-18 protein in the lungs may exacerbate disease activities of asthma. We es...
متن کاملQuantitative trait locus mapping of airway responsiveness to chromosomes 6 and 7 in inbred mice.
Quantitative trait locus (QTL) mapping was used to identify chromosomal regions contributing to airway hyperresponsiveness in mice. Airway responsiveness to methacholine was measured in A/J and C3H/HeJ parental strains as well as in progeny derived from crosses between these strains. QTL mapping of backcross [(A/J × C3H/HeJ) × C3H/HeJ] progeny ( n = 137-227 informative mice for markers tested) ...
متن کاملInteracting genetic loci cause airway hyperresponsiveness.
Airway hyperresponsiveness (AHR) is a key physiological component of asthma, and the genetic basis of this complex trait has remained elusive. We created recombinant congenic mice with increased naive AHR by serially backcrossing A/J mice (which have elevated naive AHR) with C57BL/6J mice and selecting for mice with an elevated naive AHR phenotype. The seventh backcross-generation hyperresponsi...
متن کامل