A Space–Time Multiscale Analysis System: A Sequential Variational Analysis Approach
نویسندگان
چکیده
As new observation systems are developed and deployed, new and presumably more precise information is becoming available for weather forecasting and climate monitoring. To take advantage of these new observations, it is desirable to have schemes to accurately retrieve the information before statistical analyses are performed so that statistical computation can be more effectively used where it is needed most. The authors propose a sequential variational approach that possesses advantages of both a standard statistical analysis [such as with a three-dimensional variational data assimilation (3DVAR) or Kalman filter] and a traditional objective analysis (such as the Barnes analysis). The sequential variational analysis is multiscale, inhomogeneous, anisotropic, and temporally consistent, as shown by an idealized test case and observational datasets in this study. The real data cases include applications in two-dimensional and three-dimensional space and time for storm outflow boundary detection (surface application) and hurricane data assimilation (three-dimensional space application). Implemented using a multigrid technique, this sequential variational approach is a very efficient data assimilation method.
منابع مشابه
Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory
A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...
متن کامل21st Conference on Weather Analysis and Forecasting/17th Conference on Numerical Weather Prediction 15B.7 A SEQUENTIAL VARIATIONAL ANALYSIS APPROACH FOR MESOSCALE DATA ASSIMILATION
A Space and Time Mesoscale Analysis System (STMAS) has been developed at Forecast Systems Laboratory (FSL) to generate a gridded analysis of surface observations. It is a three-dimensional variational analysis (3DVAR) of horizontal space and time instead of pressure or height levels. It is used to detect boundary layer phenomena, frontal zones, and various nonlinear phenomena, and has been used...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملHybrid steepest-descent method with sequential and functional errors in Banach space
Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...
متن کاملError Control Based Model Reduction for Multiscale Problems
In this contribution we review a posteriori based discretization methods for variational multiscale problems and suggest a suitable conceptual approach for an efficient numerical treatment of parametrized variational multiscale problems where the parameters are either chosen from a low dimensional parameter space or consists of parameter functions from some compact low dimensional manifold that...
متن کامل