PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana
نویسندگان
چکیده
Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPAR γ , induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF- α , IL-1 β , and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production.
منابع مشابه
Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization.
Improper macrophage activation is pathogenically linked to various metabolic, inflammatory, and immune disorders. Therefore, regulatory proteins controlling macrophage activation have emerged as important new therapeutic targets. We recently demonstrated that netrin-1 regulates inflammation and infiltration of monocytes and ameliorates ischemia-reperfusion-induced kidney injury. However, it was...
متن کاملLeishmania donovani secretory serine protease alters macrophage inflammatory response via COX-2 mediated PGE-2 production.
Leishmania parasites determine the outcome of the infection by inducing inflammatory response that suppresses macrophage's activation. Defense against Leishmania is dependent on Th1 inflammatory response by turning off macrophages' microbicidal property by upregulation of COX-2, as well as immunosuppressive PGE-2 production. To understand the role of L. donovani secretory serine protease (pSP) ...
متن کاملCytosolic Phospholipase A2 Group IV but Not Secreted Phospholipase A2 Group IIA, V, or X Induces Interleukin-8 and Cyclooxygenase-2 Gene and Protein Expression through Peroxisome Proliferator-activated Receptors 1 and 2 in Human Lung Cells*
It has been reported that interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) expression is regulated by peroxisome proliferator-activated receptor (PPAR)synthetic ligands. We have shown previously that cytosolic phospholipase A2 (cPLA2) is able to activate gene expression through PPARresponse elements (Pawliczak, R., Han, C., Huang, X. L., Demetris, A. J., Shelhamer, J. H., and Wu, T. (2002) J. ...
متن کاملTemperature-Induced Protein Secretion by Leishmania mexicana Modulates Macrophage Signalling and Function
Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. These digenetic microorganisms undergo a marked environmental temperature shift (TS) during transmission from the sandfly vector (ambient temperature, 25-26°C) to the mammalian host (37°C). We have observed that this TS induces a rapid and dramatic increase in protein release from Leishmania mexicana (cutaneous l...
متن کاملHepcidin Induces M1 Macrophage Polarization in Monocytes or THP-1 Derived Macrophages
Background: Macrophage polarization plays a critical role in determining the inflammatory states. Hepcidin is a key negative regulator of iron homeostasis and functions. Although hepcidin has been shown to affect ferroportin expression in macrophages, whether it affects macrophage polarization is still largely unknown. Objective: To address whether hepcidin ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013