Bayesian Additive Regression Trees using Bayesian model averaging

نویسندگان

  • Belinda Hernández
  • Adrian E. Raftery
  • Stephen R Pennington
  • Andrew C. Parnell
چکیده

Bayesian Additive Regression Trees (BART) is a statistical sum of trees model. It can be considered a Bayesian version of machine learning tree ensemble methods where the individual trees are the base learners. However for datasets where the number of variables p is large (e.g. p > 5, 000) the algorithm can become prohibitively expensive, computationally. Another method which is popular for high dimensional data is random forests, a machine learning algorithm which grows trees using a greedy search for the best split points. However, as it is not a statistical model, it cannot produce probabilistic estimates or predictions. We propose an alternative algorithm for BART called BART-BMA, which uses Bayesian Model Averaging and a greedy search algorithm to produce a model which is much more efficient than BART for datasets with large p. BART-BMA incorporates elements of both BART and random forests to offer a model-based algorithm which can deal with highdimensional data. We have found that BART-BMA can be run in a reasonable time on a standard laptop for the “small n large p” scenario which is common in many areas of bioinformatics. We showcase this method using simulated data and data from two real proteomic experiments; one to distinguish between patients with cardiovascular disease and controls and another to classify agressive from non-agressive prostate cancer. We compare our results to their main competitors. Open source code written in R and Rcpp to run BART-BMA can be found at: https://github.com/BelindaHernandez/BART-BMA.git

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

Modeling Factors Affecting Tax Evasion in Iran's Economy Based on the Bayesian averaging approach

This study seeks to model tax evasion and identify how effective factors affect tax evasion in the Iranian economy. Recent models show the failure of traditional models; Models do not have enough ability to model hidden variables such as tax evasion. The present study considers this failure in identifying explanatory variables and experimental model design. To achieve this, the Bayesian averagi...

متن کامل

bartMachine: Machine Learning with Bayesian Additive Regression Trees

We present a new package in R implementing Bayesian additive regression trees (BART). The package introduces many new features for data analysis using BART such as variable selection, interaction detection, model diagnostic plots, incorporation of missing data and the ability to save trees for future prediction. It is significantly faster than the current R implementation, parallelized, and cap...

متن کامل

The Bayesian Additive Classification Tree applied to credit risk modelling

We propose a new nonlinear classification method based on a Bayesian “sum-of-trees” model, the Bayesian Additive Classification Tree (BACT), which extends the Bayesian Additive Regression Tree (BART) method into the classification context. Like BART, the BACT is a Bayesian nonparametric additive model specified by a prior and a likelihood in which the additive components are trees, and it is fi...

متن کامل

Factors Affecting Energy Intensity in Provinces of Iran: Bayesian Averaging Approach

The identification of the most important factors affecting energy intensity with the aim of controlling and managing energy consumption is an important topic. Findings of different empirical studies on the factors affecting energy intensity are inconsistent and this raises uncertainty about the employed models. One of the techniques that conform to these uncertainty conditions of the model is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2018